L(s) = 1 | + i·2-s − 3-s − 4-s − i·5-s − i·6-s + i·7-s − i·8-s + 9-s + 10-s − i·11-s + 12-s + (3 − 2i)13-s − 14-s + i·15-s + 16-s + 17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.577·3-s − 0.5·4-s − 0.447i·5-s − 0.408i·6-s + 0.377i·7-s − 0.353i·8-s + 0.333·9-s + 0.316·10-s − 0.301i·11-s + 0.288·12-s + (0.832 − 0.554i)13-s − 0.267·14-s + 0.258i·15-s + 0.250·16-s + 0.242·17-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)(0.832−0.554i)Λ(2−s)
Λ(s)=(=(546s/2ΓC(s+1/2)L(s)(0.832−0.554i)Λ(1−s)
Degree: |
2 |
Conductor: |
546
= 2⋅3⋅7⋅13
|
Sign: |
0.832−0.554i
|
Analytic conductor: |
4.35983 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ546(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 546, ( :1/2), 0.832−0.554i)
|
Particular Values
L(1) |
≈ |
1.13638+0.344069i |
L(21) |
≈ |
1.13638+0.344069i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1+T |
| 7 | 1−iT |
| 13 | 1+(−3+2i)T |
good | 5 | 1+iT−5T2 |
| 11 | 1+iT−11T2 |
| 17 | 1−T+17T2 |
| 19 | 1−iT−19T2 |
| 23 | 1−3T+23T2 |
| 29 | 1−9T+29T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1−9iT−37T2 |
| 41 | 1+8iT−41T2 |
| 43 | 1−7T+43T2 |
| 47 | 1+8iT−47T2 |
| 53 | 1+10T+53T2 |
| 59 | 1−6iT−59T2 |
| 61 | 1−11T+61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1+6iT−71T2 |
| 73 | 1+11iT−73T2 |
| 79 | 1+12T+79T2 |
| 83 | 1+6iT−83T2 |
| 89 | 1+12iT−89T2 |
| 97 | 1−2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.78104301170401505307511686094, −10.03956400679909049827172074353, −8.783531309560911449799472382690, −8.383785026984063472299012064678, −7.13626991888380856938724060512, −6.23283583615769451213451930779, −5.42033514195581625818776081159, −4.58595412521107281643708288977, −3.18728483142858966879703378545, −1.03407213013071041944117832355,
1.11881376874371552172747247000, 2.72104849752177574724365641659, 3.98271519982292327097434245597, 4.89211644729518278801671489593, 6.16423625528239770109262574331, 6.98106462795789150955807148679, 8.109639533376156155836635696537, 9.219480901588857273058422341604, 10.02004710064398676615273167938, 11.04505362659265251242170856084