Properties

Label 2-546-13.12-c1-0-5
Degree $2$
Conductor $546$
Sign $0.832 - 0.554i$
Analytic cond. $4.35983$
Root an. cond. $2.08802$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 3-s − 4-s i·5-s i·6-s + i·7-s i·8-s + 9-s + 10-s i·11-s + 12-s + (3 − 2i)13-s − 14-s + i·15-s + 16-s + 17-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.577·3-s − 0.5·4-s − 0.447i·5-s − 0.408i·6-s + 0.377i·7-s − 0.353i·8-s + 0.333·9-s + 0.316·10-s − 0.301i·11-s + 0.288·12-s + (0.832 − 0.554i)13-s − 0.267·14-s + 0.258i·15-s + 0.250·16-s + 0.242·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.554i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(546\)    =    \(2 \cdot 3 \cdot 7 \cdot 13\)
Sign: $0.832 - 0.554i$
Analytic conductor: \(4.35983\)
Root analytic conductor: \(2.08802\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{546} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 546,\ (\ :1/2),\ 0.832 - 0.554i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.13638 + 0.344069i\)
\(L(\frac12)\) \(\approx\) \(1.13638 + 0.344069i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 + T \)
7 \( 1 - iT \)
13 \( 1 + (-3 + 2i)T \)
good5 \( 1 + iT - 5T^{2} \)
11 \( 1 + iT - 11T^{2} \)
17 \( 1 - T + 17T^{2} \)
19 \( 1 - iT - 19T^{2} \)
23 \( 1 - 3T + 23T^{2} \)
29 \( 1 - 9T + 29T^{2} \)
31 \( 1 - 4iT - 31T^{2} \)
37 \( 1 - 9iT - 37T^{2} \)
41 \( 1 + 8iT - 41T^{2} \)
43 \( 1 - 7T + 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 + 10T + 53T^{2} \)
59 \( 1 - 6iT - 59T^{2} \)
61 \( 1 - 11T + 61T^{2} \)
67 \( 1 - 12iT - 67T^{2} \)
71 \( 1 + 6iT - 71T^{2} \)
73 \( 1 + 11iT - 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 6iT - 83T^{2} \)
89 \( 1 + 12iT - 89T^{2} \)
97 \( 1 - 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78104301170401505307511686094, −10.03956400679909049827172074353, −8.783531309560911449799472382690, −8.383785026984063472299012064678, −7.13626991888380856938724060512, −6.23283583615769451213451930779, −5.42033514195581625818776081159, −4.58595412521107281643708288977, −3.18728483142858966879703378545, −1.03407213013071041944117832355, 1.11881376874371552172747247000, 2.72104849752177574724365641659, 3.98271519982292327097434245597, 4.89211644729518278801671489593, 6.16423625528239770109262574331, 6.98106462795789150955807148679, 8.109639533376156155836635696537, 9.219480901588857273058422341604, 10.02004710064398676615273167938, 11.04505362659265251242170856084

Graph of the $Z$-function along the critical line