L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 2.56·5-s + (0.499 − 0.866i)6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (1.28 + 2.21i)10-s + (−0.780 − 1.35i)11-s − 0.999·12-s + (−0.5 − 3.57i)13-s + 0.999·14-s + (−1.28 − 2.21i)15-s + (−0.5 − 0.866i)16-s + (4.06 − 7.03i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s − 1.14·5-s + (0.204 − 0.353i)6-s + (−0.188 + 0.327i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (0.405 + 0.701i)10-s + (−0.235 − 0.407i)11-s − 0.288·12-s + (−0.138 − 0.990i)13-s + 0.267·14-s + (−0.330 − 0.572i)15-s + (−0.125 − 0.216i)16-s + (0.985 − 1.70i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.597 + 0.802i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.597 + 0.802i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.262767 - 0.523153i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.262767 - 0.523153i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.5 + 3.57i)T \) |
good | 5 | \( 1 + 2.56T + 5T^{2} \) |
| 11 | \( 1 + (0.780 + 1.35i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-4.06 + 7.03i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.780 - 1.35i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.56 + 6.16i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.06 + 1.83i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 + (-3.28 - 5.68i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.62 + 4.54i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 + 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 12.6T + 47T^{2} \) |
| 53 | \( 1 - 7T + 53T^{2} \) |
| 59 | \( 1 + (-1.56 + 2.70i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.62 - 4.54i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (0.438 + 0.759i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.68 - 11.5i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 6.56T + 73T^{2} \) |
| 79 | \( 1 + 2.43T + 79T^{2} \) |
| 83 | \( 1 - 3.12T + 83T^{2} \) |
| 89 | \( 1 + (3.78 + 6.54i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.56 + 7.90i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34836773062637488730080989998, −9.826142664958310189611096007354, −8.649012574907809725469065691998, −8.071875507341444345947254388877, −7.25387520366286420394293603740, −5.64475336053364533715147800330, −4.55000271140865864625408407922, −3.46046007163665308964432715682, −2.68469348378206225240669971916, −0.37352115187422595505984512029,
1.62359781957480983878608191498, 3.53011459871439766322861903628, 4.39369288985163412354208430824, 5.84798205387652453239356846185, 6.81739302926739690352145119055, 7.73248284358295560912386242723, 8.058218068807758135724303121222, 9.202532832951306140696282577089, 10.06411124389661206173449904135, 11.14387192093863938495354857316