L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 2.56·5-s + (0.499 − 0.866i)6-s + (−0.5 + 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (1.28 + 2.21i)10-s + (−0.780 − 1.35i)11-s − 0.999·12-s + (−0.5 − 3.57i)13-s + 0.999·14-s + (−1.28 − 2.21i)15-s + (−0.5 − 0.866i)16-s + (4.06 − 7.03i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s − 1.14·5-s + (0.204 − 0.353i)6-s + (−0.188 + 0.327i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (0.405 + 0.701i)10-s + (−0.235 − 0.407i)11-s − 0.288·12-s + (−0.138 − 0.990i)13-s + 0.267·14-s + (−0.330 − 0.572i)15-s + (−0.125 − 0.216i)16-s + (0.985 − 1.70i)17-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)(−0.597+0.802i)Λ(2−s)
Λ(s)=(=(546s/2ΓC(s+1/2)L(s)(−0.597+0.802i)Λ(1−s)
Degree: |
2 |
Conductor: |
546
= 2⋅3⋅7⋅13
|
Sign: |
−0.597+0.802i
|
Analytic conductor: |
4.35983 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ546(211,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 546, ( :1/2), −0.597+0.802i)
|
Particular Values
L(1) |
≈ |
0.262767−0.523153i |
L(21) |
≈ |
0.262767−0.523153i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1+(−0.5−0.866i)T |
| 7 | 1+(0.5−0.866i)T |
| 13 | 1+(0.5+3.57i)T |
good | 5 | 1+2.56T+5T2 |
| 11 | 1+(0.780+1.35i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−4.06+7.03i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.780−1.35i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3.56+6.16i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.06+1.83i)T+(−14.5+25.1i)T2 |
| 31 | 1+31T2 |
| 37 | 1+(−3.28−5.68i)T+(−18.5+32.0i)T2 |
| 41 | 1+(2.62+4.54i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−4+6.92i)T+(−21.5−37.2i)T2 |
| 47 | 1+12.6T+47T2 |
| 53 | 1−7T+53T2 |
| 59 | 1+(−1.56+2.70i)T+(−29.5−51.0i)T2 |
| 61 | 1+(2.62−4.54i)T+(−30.5−52.8i)T2 |
| 67 | 1+(0.438+0.759i)T+(−33.5+58.0i)T2 |
| 71 | 1+(6.68−11.5i)T+(−35.5−61.4i)T2 |
| 73 | 1+6.56T+73T2 |
| 79 | 1+2.43T+79T2 |
| 83 | 1−3.12T+83T2 |
| 89 | 1+(3.78+6.54i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−4.56+7.90i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.34836773062637488730080989998, −9.826142664958310189611096007354, −8.649012574907809725469065691998, −8.071875507341444345947254388877, −7.25387520366286420394293603740, −5.64475336053364533715147800330, −4.55000271140865864625408407922, −3.46046007163665308964432715682, −2.68469348378206225240669971916, −0.37352115187422595505984512029,
1.62359781957480983878608191498, 3.53011459871439766322861903628, 4.39369288985163412354208430824, 5.84798205387652453239356846185, 6.81739302926739690352145119055, 7.73248284358295560912386242723, 8.058218068807758135724303121222, 9.202532832951306140696282577089, 10.06411124389661206173449904135, 11.14387192093863938495354857316