L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 2·5-s + (0.499 − 0.866i)6-s + (0.5 − 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (1 + 1.73i)10-s + (2.58 + 4.48i)11-s − 0.999·12-s + (−1.5 − 3.27i)13-s − 0.999·14-s + (−1 − 1.73i)15-s + (−0.5 − 0.866i)16-s + (−2.5 + 4.33i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s − 0.894·5-s + (0.204 − 0.353i)6-s + (0.188 − 0.327i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (0.316 + 0.547i)10-s + (0.780 + 1.35i)11-s − 0.288·12-s + (−0.416 − 0.909i)13-s − 0.267·14-s + (−0.258 − 0.447i)15-s + (−0.125 − 0.216i)16-s + (−0.606 + 1.05i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.734396 + 0.513764i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.734396 + 0.513764i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (1.5 + 3.27i)T \) |
good | 5 | \( 1 + 2T + 5T^{2} \) |
| 11 | \( 1 + (-2.58 - 4.48i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.5 - 4.33i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.58 - 2.75i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.08 - 7.08i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.58 - 2.75i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.17T + 31T^{2} \) |
| 37 | \( 1 + (1 + 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.58 - 6.21i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.08 - 10.5i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 7.17T + 47T^{2} \) |
| 53 | \( 1 + 3T + 53T^{2} \) |
| 59 | \( 1 + (-6.08 + 10.5i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.5 + 2.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.91 - 3.30i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.08 + 1.88i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 4T + 73T^{2} \) |
| 79 | \( 1 - 13.1T + 79T^{2} \) |
| 83 | \( 1 - 6.17T + 83T^{2} \) |
| 89 | \( 1 + (4.5 + 7.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.17 + 8.97i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97824405833601616701795341155, −10.00230279821300597157895990156, −9.475998439311390433559590264202, −8.240579418026804574474824537766, −7.76659180068789645909828552232, −6.64646963877933473075456209287, −4.94494751860031872216306115013, −4.11893531363589770482950566249, −3.26423483179434402926065797716, −1.66152350960272933531137111645,
0.58423465200281592779347530177, 2.51635319766143103932682499058, 3.97482456923709664462515045886, 5.04419061149606610582208603161, 6.49743424848565371082611113071, 6.90302359436369252990671801839, 8.066906542196925941207420155090, 8.736498086756324509579271754328, 9.278858989398728013863616779979, 10.73919597840634787213072779463