L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 2·5-s + (0.499 − 0.866i)6-s + (0.5 − 0.866i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (1 + 1.73i)10-s + (2.58 + 4.48i)11-s − 0.999·12-s + (−1.5 − 3.27i)13-s − 0.999·14-s + (−1 − 1.73i)15-s + (−0.5 − 0.866i)16-s + (−2.5 + 4.33i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s − 0.894·5-s + (0.204 − 0.353i)6-s + (0.188 − 0.327i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (0.316 + 0.547i)10-s + (0.780 + 1.35i)11-s − 0.288·12-s + (−0.416 − 0.909i)13-s − 0.267·14-s + (−0.258 − 0.447i)15-s + (−0.125 − 0.216i)16-s + (−0.606 + 1.05i)17-s + ⋯ |
Λ(s)=(=(546s/2ΓC(s)L(s)(0.342−0.939i)Λ(2−s)
Λ(s)=(=(546s/2ΓC(s+1/2)L(s)(0.342−0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
546
= 2⋅3⋅7⋅13
|
Sign: |
0.342−0.939i
|
Analytic conductor: |
4.35983 |
Root analytic conductor: |
2.08802 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ546(211,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 546, ( :1/2), 0.342−0.939i)
|
Particular Values
L(1) |
≈ |
0.734396+0.513764i |
L(21) |
≈ |
0.734396+0.513764i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 3 | 1+(−0.5−0.866i)T |
| 7 | 1+(−0.5+0.866i)T |
| 13 | 1+(1.5+3.27i)T |
good | 5 | 1+2T+5T2 |
| 11 | 1+(−2.58−4.48i)T+(−5.5+9.52i)T2 |
| 17 | 1+(2.5−4.33i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.58−2.75i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−4.08−7.08i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.58−2.75i)T+(−14.5+25.1i)T2 |
| 31 | 1−4.17T+31T2 |
| 37 | 1+(1+1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−3.58−6.21i)T+(−20.5+35.5i)T2 |
| 43 | 1+(6.08−10.5i)T+(−21.5−37.2i)T2 |
| 47 | 1+7.17T+47T2 |
| 53 | 1+3T+53T2 |
| 59 | 1+(−6.08+10.5i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1.5+2.59i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.91−3.30i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−1.08+1.88i)T+(−35.5−61.4i)T2 |
| 73 | 1−4T+73T2 |
| 79 | 1−13.1T+79T2 |
| 83 | 1−6.17T+83T2 |
| 89 | 1+(4.5+7.79i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−5.17+8.97i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.97824405833601616701795341155, −10.00230279821300597157895990156, −9.475998439311390433559590264202, −8.240579418026804574474824537766, −7.76659180068789645909828552232, −6.64646963877933473075456209287, −4.94494751860031872216306115013, −4.11893531363589770482950566249, −3.26423483179434402926065797716, −1.66152350960272933531137111645,
0.58423465200281592779347530177, 2.51635319766143103932682499058, 3.97482456923709664462515045886, 5.04419061149606610582208603161, 6.49743424848565371082611113071, 6.90302359436369252990671801839, 8.066906542196925941207420155090, 8.736498086756324509579271754328, 9.278858989398728013863616779979, 10.73919597840634787213072779463