L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.5 + 0.866i)3-s + (0.499 + 0.866i)4-s + 0.732i·5-s + (0.866 − 0.499i)6-s + (0.866 − 0.5i)7-s − 0.999i·8-s + (−0.499 − 0.866i)9-s + (0.366 − 0.633i)10-s + (1.5 + 0.866i)11-s − 0.999·12-s + (1.59 − 3.23i)13-s − 0.999·14-s + (−0.633 − 0.366i)15-s + (−0.5 + 0.866i)16-s + (1.86 + 3.23i)17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.288 + 0.499i)3-s + (0.249 + 0.433i)4-s + 0.327i·5-s + (0.353 − 0.204i)6-s + (0.327 − 0.188i)7-s − 0.353i·8-s + (−0.166 − 0.288i)9-s + (0.115 − 0.200i)10-s + (0.452 + 0.261i)11-s − 0.288·12-s + (0.443 − 0.896i)13-s − 0.267·14-s + (−0.163 − 0.0945i)15-s + (−0.125 + 0.216i)16-s + (0.452 + 0.783i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.824 - 0.565i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.824 - 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.990612 + 0.306880i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.990612 + 0.306880i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (-1.59 + 3.23i)T \) |
good | 5 | \( 1 - 0.732iT - 5T^{2} \) |
| 11 | \( 1 + (-1.5 - 0.866i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.86 - 3.23i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.866 + 0.5i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.73 - 3i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.23 - 5.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.19iT - 31T^{2} \) |
| 37 | \( 1 + (-5.83 - 3.36i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.59 - 1.5i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.63 - 2.83i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2.46iT - 47T^{2} \) |
| 53 | \( 1 - 7T + 53T^{2} \) |
| 59 | \( 1 + (-0.803 + 0.464i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.59 + 4.5i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.73 - 4.46i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.90 - 1.09i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 5.46iT - 73T^{2} \) |
| 79 | \( 1 - 2.07T + 79T^{2} \) |
| 83 | \( 1 - 0.196iT - 83T^{2} \) |
| 89 | \( 1 + (9.06 + 5.23i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.5 + 7.83i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79138033454868803260646687652, −10.14101182143248310448590899383, −9.265719529422004260797475720291, −8.328420958027490393525284725526, −7.45635512146812402965429340057, −6.37243157379974201728589590801, −5.30416635511018551316427233145, −4.00716912079894669915291008645, −3.02685845403989968944866945151, −1.29360346199130214710424497254,
0.926301273700834640319346484287, 2.32096330944653758915800400891, 4.14794305922382447816013905362, 5.38567503252472026963338892338, 6.25984439166830131523684117458, 7.15873600195455352732704127888, 8.049184739844742437751944333469, 8.910811064175830418972629874358, 9.607515564867724926863919977306, 10.79085251521530519987053866857