L(s) = 1 | + 2.41·2-s − 2.82·3-s + 3.82·4-s − 5-s − 6.82·6-s − 2·7-s + 4.41·8-s + 5.00·9-s − 2.41·10-s + 11-s − 10.8·12-s − 1.17·13-s − 4.82·14-s + 2.82·15-s + 2.99·16-s + 6.82·17-s + 12.0·18-s − 3.82·20-s + 5.65·21-s + 2.41·22-s − 2.82·23-s − 12.4·24-s + 25-s − 2.82·26-s − 5.65·27-s − 7.65·28-s − 3.65·29-s + ⋯ |
L(s) = 1 | + 1.70·2-s − 1.63·3-s + 1.91·4-s − 0.447·5-s − 2.78·6-s − 0.755·7-s + 1.56·8-s + 1.66·9-s − 0.763·10-s + 0.301·11-s − 3.12·12-s − 0.324·13-s − 1.29·14-s + 0.730·15-s + 0.749·16-s + 1.65·17-s + 2.84·18-s − 0.856·20-s + 1.23·21-s + 0.514·22-s − 0.589·23-s − 2.54·24-s + 0.200·25-s − 0.554·26-s − 1.08·27-s − 1.44·28-s − 0.679·29-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.197056967 |
L(21) |
≈ |
1.197056967 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+T |
| 11 | 1−T |
good | 2 | 1−2.41T+2T2 |
| 3 | 1+2.82T+3T2 |
| 7 | 1+2T+7T2 |
| 13 | 1+1.17T+13T2 |
| 17 | 1−6.82T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+2.82T+23T2 |
| 29 | 1+3.65T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+7.65T+37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1+6T+43T2 |
| 47 | 1−2.82T+47T2 |
| 53 | 1−11.6T+53T2 |
| 59 | 1−1.65T+59T2 |
| 61 | 1+9.31T+61T2 |
| 67 | 1−12.4T+67T2 |
| 71 | 1−11.3T+71T2 |
| 73 | 1+1.17T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1+6T+83T2 |
| 89 | 1+13.3T+89T2 |
| 97 | 1−3.65T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.34960948708537437517013199535, −14.10678218029280958479780612667, −12.69871244487788176118942150891, −12.18106320759827562104741174082, −11.34576766095860460302436742769, −10.09200070663283635358165303574, −7.19557878469241887119343312891, −6.08854885975527628228900382813, −5.16733014703725630411671370919, −3.70347734990671907639955801345,
3.70347734990671907639955801345, 5.16733014703725630411671370919, 6.08854885975527628228900382813, 7.19557878469241887119343312891, 10.09200070663283635358165303574, 11.34576766095860460302436742769, 12.18106320759827562104741174082, 12.69871244487788176118942150891, 14.10678218029280958479780612667, 15.34960948708537437517013199535