Properties

Label 2-55-1.1-c1-0-2
Degree $2$
Conductor $55$
Sign $1$
Analytic cond. $0.439177$
Root an. cond. $0.662704$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·2-s − 2.82·3-s + 3.82·4-s − 5-s − 6.82·6-s − 2·7-s + 4.41·8-s + 5.00·9-s − 2.41·10-s + 11-s − 10.8·12-s − 1.17·13-s − 4.82·14-s + 2.82·15-s + 2.99·16-s + 6.82·17-s + 12.0·18-s − 3.82·20-s + 5.65·21-s + 2.41·22-s − 2.82·23-s − 12.4·24-s + 25-s − 2.82·26-s − 5.65·27-s − 7.65·28-s − 3.65·29-s + ⋯
L(s)  = 1  + 1.70·2-s − 1.63·3-s + 1.91·4-s − 0.447·5-s − 2.78·6-s − 0.755·7-s + 1.56·8-s + 1.66·9-s − 0.763·10-s + 0.301·11-s − 3.12·12-s − 0.324·13-s − 1.29·14-s + 0.730·15-s + 0.749·16-s + 1.65·17-s + 2.84·18-s − 0.856·20-s + 1.23·21-s + 0.514·22-s − 0.589·23-s − 2.54·24-s + 0.200·25-s − 0.554·26-s − 1.08·27-s − 1.44·28-s − 0.679·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $1$
Analytic conductor: \(0.439177\)
Root analytic conductor: \(0.662704\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.197056967\)
\(L(\frac12)\) \(\approx\) \(1.197056967\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
11 \( 1 - T \)
good2 \( 1 - 2.41T + 2T^{2} \)
3 \( 1 + 2.82T + 3T^{2} \)
7 \( 1 + 2T + 7T^{2} \)
13 \( 1 + 1.17T + 13T^{2} \)
17 \( 1 - 6.82T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 2.82T + 23T^{2} \)
29 \( 1 + 3.65T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 7.65T + 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 6T + 43T^{2} \)
47 \( 1 - 2.82T + 47T^{2} \)
53 \( 1 - 11.6T + 53T^{2} \)
59 \( 1 - 1.65T + 59T^{2} \)
61 \( 1 + 9.31T + 61T^{2} \)
67 \( 1 - 12.4T + 67T^{2} \)
71 \( 1 - 11.3T + 71T^{2} \)
73 \( 1 + 1.17T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 + 6T + 83T^{2} \)
89 \( 1 + 13.3T + 89T^{2} \)
97 \( 1 - 3.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.34960948708537437517013199535, −14.10678218029280958479780612667, −12.69871244487788176118942150891, −12.18106320759827562104741174082, −11.34576766095860460302436742769, −10.09200070663283635358165303574, −7.19557878469241887119343312891, −6.08854885975527628228900382813, −5.16733014703725630411671370919, −3.70347734990671907639955801345, 3.70347734990671907639955801345, 5.16733014703725630411671370919, 6.08854885975527628228900382813, 7.19557878469241887119343312891, 10.09200070663283635358165303574, 11.34576766095860460302436742769, 12.18106320759827562104741174082, 12.69871244487788176118942150891, 14.10678218029280958479780612667, 15.34960948708537437517013199535

Graph of the $Z$-function along the critical line