L(s) = 1 | + (0.188 + 0.188i)2-s + (0.812 − 0.812i)3-s − 3.92i·4-s + (−1.21 − 4.84i)5-s + 0.305·6-s + (5.94 + 5.94i)7-s + (1.49 − 1.49i)8-s + 7.67i·9-s + (0.683 − 1.14i)10-s − 3.31·11-s + (−3.19 − 3.19i)12-s + (3.02 − 3.02i)13-s + 2.23i·14-s + (−4.92 − 2.95i)15-s − 15.1·16-s + (0.878 + 0.878i)17-s + ⋯ |
L(s) = 1 | + (0.0940 + 0.0940i)2-s + (0.270 − 0.270i)3-s − 0.982i·4-s + (−0.243 − 0.969i)5-s + 0.0509·6-s + (0.849 + 0.849i)7-s + (0.186 − 0.186i)8-s + 0.853i·9-s + (0.0683 − 0.114i)10-s − 0.301·11-s + (−0.266 − 0.266i)12-s + (0.232 − 0.232i)13-s + 0.159i·14-s + (−0.328 − 0.196i)15-s − 0.947·16-s + (0.0516 + 0.0516i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.716 + 0.697i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.716 + 0.697i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.21584 - 0.493797i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.21584 - 0.493797i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.21 + 4.84i)T \) |
| 11 | \( 1 + 3.31T \) |
good | 2 | \( 1 + (-0.188 - 0.188i)T + 4iT^{2} \) |
| 3 | \( 1 + (-0.812 + 0.812i)T - 9iT^{2} \) |
| 7 | \( 1 + (-5.94 - 5.94i)T + 49iT^{2} \) |
| 13 | \( 1 + (-3.02 + 3.02i)T - 169iT^{2} \) |
| 17 | \( 1 + (-0.878 - 0.878i)T + 289iT^{2} \) |
| 19 | \( 1 - 29.2iT - 361T^{2} \) |
| 23 | \( 1 + (-11.8 + 11.8i)T - 529iT^{2} \) |
| 29 | \( 1 + 15.7iT - 841T^{2} \) |
| 31 | \( 1 + 14.3T + 961T^{2} \) |
| 37 | \( 1 + (-36.1 - 36.1i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 57.6T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-58.0 + 58.0i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (29.8 + 29.8i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (59.0 - 59.0i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 61.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 1.59T + 3.72e3T^{2} \) |
| 67 | \( 1 + (32.7 + 32.7i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 12.4T + 5.04e3T^{2} \) |
| 73 | \( 1 + (74.3 - 74.3i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 21.8iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-45.9 + 45.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 89.4iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (62.6 + 62.6i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.91236514104645012886838623867, −13.89562752488202578059572719019, −12.77653972500990229084946411204, −11.53225653797741929448524672565, −10.26162891416412529553872673071, −8.776852003322868304135469040473, −7.86275404361550842304064051547, −5.75530122640673775529865152377, −4.79793864925451289393078551130, −1.76683815116661996695888395739,
3.08384559203806056997747944258, 4.36525013173734177040317102577, 6.85931778670459618456055619339, 7.80201233235856823630566270415, 9.214108985083621446152743963159, 10.88201903857509299940240571856, 11.55016993275592071745706803912, 13.04694667949253652209071881631, 14.15119820644746608436382645840, 15.08937587346757787245243660242