L(s) = 1 | + (−0.864 − 0.864i)2-s + (−2.45 + 2.45i)3-s − 2.50i·4-s + (−4.77 − 1.46i)5-s + 4.24·6-s + (−6.72 − 6.72i)7-s + (−5.62 + 5.62i)8-s − 3.03i·9-s + (2.86 + 5.40i)10-s + 3.31·11-s + (6.14 + 6.14i)12-s + (0.519 − 0.519i)13-s + 11.6i·14-s + (15.3 − 8.12i)15-s − 0.288·16-s + (5.04 + 5.04i)17-s + ⋯ |
L(s) = 1 | + (−0.432 − 0.432i)2-s + (−0.817 + 0.817i)3-s − 0.626i·4-s + (−0.955 − 0.293i)5-s + 0.707·6-s + (−0.960 − 0.960i)7-s + (−0.703 + 0.703i)8-s − 0.337i·9-s + (0.286 + 0.540i)10-s + 0.301·11-s + (0.511 + 0.511i)12-s + (0.0399 − 0.0399i)13-s + 0.831i·14-s + (1.02 − 0.541i)15-s − 0.0180·16-s + (0.296 + 0.296i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(−0.967+0.253i)Λ(3−s)
Λ(s)=(=(55s/2ΓC(s+1)L(s)(−0.967+0.253i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
−0.967+0.253i
|
Analytic conductor: |
1.49864 |
Root analytic conductor: |
1.22419 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(12,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1), −0.967+0.253i)
|
Particular Values
L(23) |
≈ |
0.0285833−0.222238i |
L(21) |
≈ |
0.0285833−0.222238i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(4.77+1.46i)T |
| 11 | 1−3.31T |
good | 2 | 1+(0.864+0.864i)T+4iT2 |
| 3 | 1+(2.45−2.45i)T−9iT2 |
| 7 | 1+(6.72+6.72i)T+49iT2 |
| 13 | 1+(−0.519+0.519i)T−169iT2 |
| 17 | 1+(−5.04−5.04i)T+289iT2 |
| 19 | 1+25.5iT−361T2 |
| 23 | 1+(5.12−5.12i)T−529iT2 |
| 29 | 1−0.0328iT−841T2 |
| 31 | 1+51.6T+961T2 |
| 37 | 1+(17.2+17.2i)T+1.36e3iT2 |
| 41 | 1+26.0T+1.68e3T2 |
| 43 | 1+(−49.5+49.5i)T−1.84e3iT2 |
| 47 | 1+(60.9+60.9i)T+2.20e3iT2 |
| 53 | 1+(−19.8+19.8i)T−2.80e3iT2 |
| 59 | 1−108.iT−3.48e3T2 |
| 61 | 1−103.T+3.72e3T2 |
| 67 | 1+(−13.8−13.8i)T+4.48e3iT2 |
| 71 | 1+65.5T+5.04e3T2 |
| 73 | 1+(39.0−39.0i)T−5.32e3iT2 |
| 79 | 1+29.1iT−6.24e3T2 |
| 83 | 1+(−55.8+55.8i)T−6.88e3iT2 |
| 89 | 1+6.65iT−7.92e3T2 |
| 97 | 1+(−34.5−34.5i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.86290137739138155552243778421, −13.29515505810438623522379704878, −11.79982164427181389041029411870, −10.89715325497930999782491066579, −10.13130569186413203864492271296, −8.966258078616924229922912789623, −7.02955156488428508665474948536, −5.36203099952563642872309806974, −3.88486998208537043868867333864, −0.26922146434579601786721871911,
3.44658421505604742158215086878, 6.03591269644729694775129567954, 6.98666149012794671939772920991, 8.120471924500554429036506050937, 9.466985049766085731114693360009, 11.39702728454446698401163882642, 12.33461723522029170180149439981, 12.71074445787843264415932834500, 14.73901181932060958000327951350, 16.00289099678856871470213797269