L(s) = 1 | + (−0.864 − 0.864i)2-s + (−2.45 + 2.45i)3-s − 2.50i·4-s + (−4.77 − 1.46i)5-s + 4.24·6-s + (−6.72 − 6.72i)7-s + (−5.62 + 5.62i)8-s − 3.03i·9-s + (2.86 + 5.40i)10-s + 3.31·11-s + (6.14 + 6.14i)12-s + (0.519 − 0.519i)13-s + 11.6i·14-s + (15.3 − 8.12i)15-s − 0.288·16-s + (5.04 + 5.04i)17-s + ⋯ |
L(s) = 1 | + (−0.432 − 0.432i)2-s + (−0.817 + 0.817i)3-s − 0.626i·4-s + (−0.955 − 0.293i)5-s + 0.707·6-s + (−0.960 − 0.960i)7-s + (−0.703 + 0.703i)8-s − 0.337i·9-s + (0.286 + 0.540i)10-s + 0.301·11-s + (0.511 + 0.511i)12-s + (0.0399 − 0.0399i)13-s + 0.831i·14-s + (1.02 − 0.541i)15-s − 0.0180·16-s + (0.296 + 0.296i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 + 0.253i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.967 + 0.253i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0285833 - 0.222238i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0285833 - 0.222238i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (4.77 + 1.46i)T \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (0.864 + 0.864i)T + 4iT^{2} \) |
| 3 | \( 1 + (2.45 - 2.45i)T - 9iT^{2} \) |
| 7 | \( 1 + (6.72 + 6.72i)T + 49iT^{2} \) |
| 13 | \( 1 + (-0.519 + 0.519i)T - 169iT^{2} \) |
| 17 | \( 1 + (-5.04 - 5.04i)T + 289iT^{2} \) |
| 19 | \( 1 + 25.5iT - 361T^{2} \) |
| 23 | \( 1 + (5.12 - 5.12i)T - 529iT^{2} \) |
| 29 | \( 1 - 0.0328iT - 841T^{2} \) |
| 31 | \( 1 + 51.6T + 961T^{2} \) |
| 37 | \( 1 + (17.2 + 17.2i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 26.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-49.5 + 49.5i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (60.9 + 60.9i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-19.8 + 19.8i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 108. iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 103.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-13.8 - 13.8i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 65.5T + 5.04e3T^{2} \) |
| 73 | \( 1 + (39.0 - 39.0i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 29.1iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-55.8 + 55.8i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 6.65iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-34.5 - 34.5i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.86290137739138155552243778421, −13.29515505810438623522379704878, −11.79982164427181389041029411870, −10.89715325497930999782491066579, −10.13130569186413203864492271296, −8.966258078616924229922912789623, −7.02955156488428508665474948536, −5.36203099952563642872309806974, −3.88486998208537043868867333864, −0.26922146434579601786721871911,
3.44658421505604742158215086878, 6.03591269644729694775129567954, 6.98666149012794671939772920991, 8.120471924500554429036506050937, 9.466985049766085731114693360009, 11.39702728454446698401163882642, 12.33461723522029170180149439981, 12.71074445787843264415932834500, 14.73901181932060958000327951350, 16.00289099678856871470213797269