L(s) = 1 | + (1.30 − 0.665i)2-s + (−0.822 − 0.130i)3-s + (0.0875 − 0.120i)4-s + (−0.233 − 2.22i)5-s + (−1.16 + 0.377i)6-s + (0.659 + 4.16i)7-s + (−0.424 + 2.68i)8-s + (−2.19 − 0.712i)9-s + (−1.78 − 2.74i)10-s + (−0.920 − 3.18i)11-s + (−0.0877 + 0.0877i)12-s + (−0.420 − 0.824i)13-s + (3.63 + 4.99i)14-s + (−0.0979 + 1.85i)15-s + (1.32 + 4.06i)16-s + (0.875 − 1.71i)17-s + ⋯ |
L(s) = 1 | + (0.923 − 0.470i)2-s + (−0.474 − 0.0751i)3-s + (0.0437 − 0.0602i)4-s + (−0.104 − 0.994i)5-s + (−0.473 + 0.153i)6-s + (0.249 + 1.57i)7-s + (−0.150 + 0.947i)8-s + (−0.731 − 0.237i)9-s + (−0.564 − 0.869i)10-s + (−0.277 − 0.960i)11-s + (−0.0253 + 0.0253i)12-s + (−0.116 − 0.228i)13-s + (0.970 + 1.33i)14-s + (−0.0252 + 0.479i)15-s + (0.330 + 1.01i)16-s + (0.212 − 0.416i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.875+0.482i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(0.875+0.482i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.875+0.482i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), 0.875+0.482i)
|
Particular Values
L(1) |
≈ |
1.02006−0.262680i |
L(21) |
≈ |
1.02006−0.262680i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.233+2.22i)T |
| 11 | 1+(0.920+3.18i)T |
good | 2 | 1+(−1.30+0.665i)T+(1.17−1.61i)T2 |
| 3 | 1+(0.822+0.130i)T+(2.85+0.927i)T2 |
| 7 | 1+(−0.659−4.16i)T+(−6.65+2.16i)T2 |
| 13 | 1+(0.420+0.824i)T+(−7.64+10.5i)T2 |
| 17 | 1+(−0.875+1.71i)T+(−9.99−13.7i)T2 |
| 19 | 1+(−4.39+3.19i)T+(5.87−18.0i)T2 |
| 23 | 1+(−1.95−1.95i)T+23iT2 |
| 29 | 1+(0.810+0.588i)T+(8.96+27.5i)T2 |
| 31 | 1+(−0.131+0.403i)T+(−25.0−18.2i)T2 |
| 37 | 1+(4.87−0.771i)T+(35.1−11.4i)T2 |
| 41 | 1+(−0.339−0.467i)T+(−12.6+38.9i)T2 |
| 43 | 1+(5.05−5.05i)T−43iT2 |
| 47 | 1+(0.186−1.17i)T+(−44.6−14.5i)T2 |
| 53 | 1+(−8.09+4.12i)T+(31.1−42.8i)T2 |
| 59 | 1+(5.47−7.53i)T+(−18.2−56.1i)T2 |
| 61 | 1+(−7.40+2.40i)T+(49.3−35.8i)T2 |
| 67 | 1+(3.05−3.05i)T−67iT2 |
| 71 | 1+(−2.65−8.17i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−5.39+0.854i)T+(69.4−22.5i)T2 |
| 79 | 1+(−0.705+2.17i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−1.77−0.902i)T+(48.7+67.1i)T2 |
| 89 | 1+13.9iT−89T2 |
| 97 | 1+(−1.50−2.96i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.13361516037120901191449174769, −13.84518969417529450072254444607, −12.82673055628188539560785855274, −11.80631839672516289205194383634, −11.46215002484084892703654440548, −9.100015532871975858153526619841, −8.305302708803490014798144703748, −5.64145158594276843712038188428, −5.15938250516688489393506567922, −2.98425097363403209050426868035,
3.74359637156638644456182840419, 5.15297678792335216523781939925, 6.63912850779153218725852455218, 7.57057373316167018024527225063, 10.01288863065667166949969980175, 10.75982640677870642877114052021, 12.14083744266960382832170610998, 13.63176426623090742931618503633, 14.24550948013309605291675894759, 15.09922149233619236586153809870