L(s) = 1 | + (0.725 + 0.998i)2-s + (0.346 − 0.112i)3-s + (0.147 − 0.453i)4-s + (−2.11 + 0.713i)5-s + (0.363 + 0.264i)6-s + (−2.45 − 0.798i)7-s + (2.90 − 0.944i)8-s + (−2.31 + 1.68i)9-s + (−2.24 − 1.59i)10-s + (3.12 + 1.12i)11-s − 0.173i·12-s + (−1.62 − 2.23i)13-s + (−0.985 − 3.03i)14-s + (−0.653 + 0.485i)15-s + (2.27 + 1.65i)16-s + (2.26 − 3.11i)17-s + ⋯ |
L(s) = 1 | + (0.512 + 0.705i)2-s + (0.199 − 0.0649i)3-s + (0.0737 − 0.226i)4-s + (−0.947 + 0.319i)5-s + (0.148 + 0.107i)6-s + (−0.929 − 0.301i)7-s + (1.02 − 0.333i)8-s + (−0.773 + 0.561i)9-s + (−0.711 − 0.505i)10-s + (0.940 + 0.339i)11-s − 0.0501i·12-s + (−0.449 − 0.619i)13-s + (−0.263 − 0.810i)14-s + (−0.168 + 0.125i)15-s + (0.569 + 0.414i)16-s + (0.549 − 0.755i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.834 - 0.550i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.834 - 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.963540 + 0.289361i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.963540 + 0.289361i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (2.11 - 0.713i)T \) |
| 11 | \( 1 + (-3.12 - 1.12i)T \) |
good | 2 | \( 1 + (-0.725 - 0.998i)T + (-0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.346 + 0.112i)T + (2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (2.45 + 0.798i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (1.62 + 2.23i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-2.26 + 3.11i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.0857 - 0.264i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 8.40iT - 23T^{2} \) |
| 29 | \( 1 + (1.02 - 3.16i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.456 - 0.331i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.497 + 0.161i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.57 + 4.86i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 2.54iT - 43T^{2} \) |
| 47 | \( 1 + (-4.68 + 1.52i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (5.12 + 7.05i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.31 - 7.13i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (11.4 + 8.33i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 3.20iT - 67T^{2} \) |
| 71 | \( 1 + (-6.79 - 4.93i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-12.3 - 4.02i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-7.85 + 5.70i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (1.93 - 2.66i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 2.48T + 89T^{2} \) |
| 97 | \( 1 + (-6.40 - 8.81i)T + (-29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.36620017734233547355412590916, −14.43552992250599022763929400483, −13.56455870341471929100461587525, −12.14333377275171305939971425018, −10.88740170675470293863057144100, −9.557034928643488224255017332771, −7.73284852000233910814030802180, −6.85672270016418701661153164018, −5.32204466462974643831084745307, −3.52882912728503075106484871815,
3.10293891013009170619354558803, 4.24213330381491402305082889604, 6.45145449956813619574853299824, 8.132153788753637135653223743089, 9.290805876867923238838911064408, 11.01591494732306672212269756143, 12.11400552689035190602793752880, 12.51357000971853668368735529045, 14.02260878519013499332393962570, 15.06108015571473162402207817091