L(s) = 1 | + (0.725 + 0.998i)2-s + (0.346 − 0.112i)3-s + (0.147 − 0.453i)4-s + (−2.11 + 0.713i)5-s + (0.363 + 0.264i)6-s + (−2.45 − 0.798i)7-s + (2.90 − 0.944i)8-s + (−2.31 + 1.68i)9-s + (−2.24 − 1.59i)10-s + (3.12 + 1.12i)11-s − 0.173i·12-s + (−1.62 − 2.23i)13-s + (−0.985 − 3.03i)14-s + (−0.653 + 0.485i)15-s + (2.27 + 1.65i)16-s + (2.26 − 3.11i)17-s + ⋯ |
L(s) = 1 | + (0.512 + 0.705i)2-s + (0.199 − 0.0649i)3-s + (0.0737 − 0.226i)4-s + (−0.947 + 0.319i)5-s + (0.148 + 0.107i)6-s + (−0.929 − 0.301i)7-s + (1.02 − 0.333i)8-s + (−0.773 + 0.561i)9-s + (−0.711 − 0.505i)10-s + (0.940 + 0.339i)11-s − 0.0501i·12-s + (−0.449 − 0.619i)13-s + (−0.263 − 0.810i)14-s + (−0.168 + 0.125i)15-s + (0.569 + 0.414i)16-s + (0.549 − 0.755i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.834−0.550i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(0.834−0.550i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.834−0.550i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), 0.834−0.550i)
|
Particular Values
L(1) |
≈ |
0.963540+0.289361i |
L(21) |
≈ |
0.963540+0.289361i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.11−0.713i)T |
| 11 | 1+(−3.12−1.12i)T |
good | 2 | 1+(−0.725−0.998i)T+(−0.618+1.90i)T2 |
| 3 | 1+(−0.346+0.112i)T+(2.42−1.76i)T2 |
| 7 | 1+(2.45+0.798i)T+(5.66+4.11i)T2 |
| 13 | 1+(1.62+2.23i)T+(−4.01+12.3i)T2 |
| 17 | 1+(−2.26+3.11i)T+(−5.25−16.1i)T2 |
| 19 | 1+(−0.0857−0.264i)T+(−15.3+11.1i)T2 |
| 23 | 1−8.40iT−23T2 |
| 29 | 1+(1.02−3.16i)T+(−23.4−17.0i)T2 |
| 31 | 1+(0.456−0.331i)T+(9.57−29.4i)T2 |
| 37 | 1+(0.497+0.161i)T+(29.9+21.7i)T2 |
| 41 | 1+(1.57+4.86i)T+(−33.1+24.0i)T2 |
| 43 | 1+2.54iT−43T2 |
| 47 | 1+(−4.68+1.52i)T+(38.0−27.6i)T2 |
| 53 | 1+(5.12+7.05i)T+(−16.3+50.4i)T2 |
| 59 | 1+(2.31−7.13i)T+(−47.7−34.6i)T2 |
| 61 | 1+(11.4+8.33i)T+(18.8+58.0i)T2 |
| 67 | 1−3.20iT−67T2 |
| 71 | 1+(−6.79−4.93i)T+(21.9+67.5i)T2 |
| 73 | 1+(−12.3−4.02i)T+(59.0+42.9i)T2 |
| 79 | 1+(−7.85+5.70i)T+(24.4−75.1i)T2 |
| 83 | 1+(1.93−2.66i)T+(−25.6−78.9i)T2 |
| 89 | 1+2.48T+89T2 |
| 97 | 1+(−6.40−8.81i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.36620017734233547355412590916, −14.43552992250599022763929400483, −13.56455870341471929100461587525, −12.14333377275171305939971425018, −10.88740170675470293863057144100, −9.557034928643488224255017332771, −7.73284852000233910814030802180, −6.85672270016418701661153164018, −5.32204466462974643831084745307, −3.52882912728503075106484871815,
3.10293891013009170619354558803, 4.24213330381491402305082889604, 6.45145449956813619574853299824, 8.132153788753637135653223743089, 9.290805876867923238838911064408, 11.01591494732306672212269756143, 12.11400552689035190602793752880, 12.51357000971853668368735529045, 14.02260878519013499332393962570, 15.06108015571473162402207817091