L(s) = 1 | + (−0.725 − 0.998i)2-s + (−0.346 + 0.112i)3-s + (0.147 − 0.453i)4-s + (0.0238 − 2.23i)5-s + (0.363 + 0.264i)6-s + (2.45 + 0.798i)7-s + (−2.90 + 0.944i)8-s + (−2.31 + 1.68i)9-s + (−2.24 + 1.59i)10-s + (3.12 + 1.12i)11-s + 0.173i·12-s + (1.62 + 2.23i)13-s + (−0.985 − 3.03i)14-s + (0.243 + 0.776i)15-s + (2.27 + 1.65i)16-s + (−2.26 + 3.11i)17-s + ⋯ |
L(s) = 1 | + (−0.512 − 0.705i)2-s + (−0.199 + 0.0649i)3-s + (0.0737 − 0.226i)4-s + (0.0106 − 0.999i)5-s + (0.148 + 0.107i)6-s + (0.929 + 0.301i)7-s + (−1.02 + 0.333i)8-s + (−0.773 + 0.561i)9-s + (−0.711 + 0.505i)10-s + (0.940 + 0.339i)11-s + 0.0501i·12-s + (0.449 + 0.619i)13-s + (−0.263 − 0.810i)14-s + (0.0628 + 0.200i)15-s + (0.569 + 0.414i)16-s + (−0.549 + 0.755i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(0.245+0.969i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(0.245+0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
0.245+0.969i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), 0.245+0.969i)
|
Particular Values
L(1) |
≈ |
0.537278−0.418191i |
L(21) |
≈ |
0.537278−0.418191i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−0.0238+2.23i)T |
| 11 | 1+(−3.12−1.12i)T |
good | 2 | 1+(0.725+0.998i)T+(−0.618+1.90i)T2 |
| 3 | 1+(0.346−0.112i)T+(2.42−1.76i)T2 |
| 7 | 1+(−2.45−0.798i)T+(5.66+4.11i)T2 |
| 13 | 1+(−1.62−2.23i)T+(−4.01+12.3i)T2 |
| 17 | 1+(2.26−3.11i)T+(−5.25−16.1i)T2 |
| 19 | 1+(−0.0857−0.264i)T+(−15.3+11.1i)T2 |
| 23 | 1+8.40iT−23T2 |
| 29 | 1+(1.02−3.16i)T+(−23.4−17.0i)T2 |
| 31 | 1+(0.456−0.331i)T+(9.57−29.4i)T2 |
| 37 | 1+(−0.497−0.161i)T+(29.9+21.7i)T2 |
| 41 | 1+(1.57+4.86i)T+(−33.1+24.0i)T2 |
| 43 | 1−2.54iT−43T2 |
| 47 | 1+(4.68−1.52i)T+(38.0−27.6i)T2 |
| 53 | 1+(−5.12−7.05i)T+(−16.3+50.4i)T2 |
| 59 | 1+(2.31−7.13i)T+(−47.7−34.6i)T2 |
| 61 | 1+(11.4+8.33i)T+(18.8+58.0i)T2 |
| 67 | 1+3.20iT−67T2 |
| 71 | 1+(−6.79−4.93i)T+(21.9+67.5i)T2 |
| 73 | 1+(12.3+4.02i)T+(59.0+42.9i)T2 |
| 79 | 1+(−7.85+5.70i)T+(24.4−75.1i)T2 |
| 83 | 1+(−1.93+2.66i)T+(−25.6−78.9i)T2 |
| 89 | 1+2.48T+89T2 |
| 97 | 1+(6.40+8.81i)T+(−29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.99985509861852945895134498871, −14.06990911915570951937399001024, −12.40289482625520856623690217809, −11.53657428751053321174025869808, −10.64070313557157476748871117909, −9.054205466256559674275725971206, −8.449211174199302255754010612488, −6.10874749854609150362245226240, −4.66639998614416985705782401760, −1.80567855218291239778268290432,
3.40210840687127325413544219627, 5.92194244313899952426756250319, 7.05469794989621774496536166490, 8.178708233557622709371050113487, 9.437744752438169856331928753427, 11.24142654725924826127867066251, 11.71964908879812819489883028120, 13.64579366618590351485027552149, 14.72243232705206917055039392514, 15.51318585884385469720715893123