L(s) = 1 | + (−0.725 − 0.998i)2-s + (−0.346 + 0.112i)3-s + (0.147 − 0.453i)4-s + (0.0238 − 2.23i)5-s + (0.363 + 0.264i)6-s + (2.45 + 0.798i)7-s + (−2.90 + 0.944i)8-s + (−2.31 + 1.68i)9-s + (−2.24 + 1.59i)10-s + (3.12 + 1.12i)11-s + 0.173i·12-s + (1.62 + 2.23i)13-s + (−0.985 − 3.03i)14-s + (0.243 + 0.776i)15-s + (2.27 + 1.65i)16-s + (−2.26 + 3.11i)17-s + ⋯ |
L(s) = 1 | + (−0.512 − 0.705i)2-s + (−0.199 + 0.0649i)3-s + (0.0737 − 0.226i)4-s + (0.0106 − 0.999i)5-s + (0.148 + 0.107i)6-s + (0.929 + 0.301i)7-s + (−1.02 + 0.333i)8-s + (−0.773 + 0.561i)9-s + (−0.711 + 0.505i)10-s + (0.940 + 0.339i)11-s + 0.0501i·12-s + (0.449 + 0.619i)13-s + (−0.263 − 0.810i)14-s + (0.0628 + 0.200i)15-s + (0.569 + 0.414i)16-s + (−0.549 + 0.755i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.245 + 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.245 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.537278 - 0.418191i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.537278 - 0.418191i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.0238 + 2.23i)T \) |
| 11 | \( 1 + (-3.12 - 1.12i)T \) |
good | 2 | \( 1 + (0.725 + 0.998i)T + (-0.618 + 1.90i)T^{2} \) |
| 3 | \( 1 + (0.346 - 0.112i)T + (2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-2.45 - 0.798i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.62 - 2.23i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (2.26 - 3.11i)T + (-5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.0857 - 0.264i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 8.40iT - 23T^{2} \) |
| 29 | \( 1 + (1.02 - 3.16i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.456 - 0.331i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.497 - 0.161i)T + (29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (1.57 + 4.86i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 2.54iT - 43T^{2} \) |
| 47 | \( 1 + (4.68 - 1.52i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.12 - 7.05i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.31 - 7.13i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (11.4 + 8.33i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 3.20iT - 67T^{2} \) |
| 71 | \( 1 + (-6.79 - 4.93i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (12.3 + 4.02i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-7.85 + 5.70i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.93 + 2.66i)T + (-25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 2.48T + 89T^{2} \) |
| 97 | \( 1 + (6.40 + 8.81i)T + (-29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.99985509861852945895134498871, −14.06990911915570951937399001024, −12.40289482625520856623690217809, −11.53657428751053321174025869808, −10.64070313557157476748871117909, −9.054205466256559674275725971206, −8.449211174199302255754010612488, −6.10874749854609150362245226240, −4.66639998614416985705782401760, −1.80567855218291239778268290432,
3.40210840687127325413544219627, 5.92194244313899952426756250319, 7.05469794989621774496536166490, 8.178708233557622709371050113487, 9.437744752438169856331928753427, 11.24142654725924826127867066251, 11.71964908879812819489883028120, 13.64579366618590351485027552149, 14.72243232705206917055039392514, 15.51318585884385469720715893123