L(s) = 1 | + (0.193 + 1.22i)2-s + (−2.26 + 1.15i)3-s + (0.443 − 0.144i)4-s + (−0.536 + 2.17i)5-s + (−1.85 − 2.54i)6-s + (1.57 − 3.09i)7-s + (1.38 + 2.72i)8-s + (2.04 − 2.80i)9-s + (−2.75 − 0.235i)10-s + (0.937 − 3.18i)11-s + (−0.839 + 0.839i)12-s + (0.730 − 0.115i)13-s + (4.08 + 1.32i)14-s + (−1.29 − 5.54i)15-s + (−2.30 + 1.67i)16-s + (−0.609 − 0.0965i)17-s + ⋯ |
L(s) = 1 | + (0.136 + 0.864i)2-s + (−1.30 + 0.666i)3-s + (0.221 − 0.0720i)4-s + (−0.239 + 0.970i)5-s + (−0.755 − 1.04i)6-s + (0.595 − 1.16i)7-s + (0.490 + 0.962i)8-s + (0.680 − 0.936i)9-s + (−0.872 − 0.0744i)10-s + (0.282 − 0.959i)11-s + (−0.242 + 0.242i)12-s + (0.202 − 0.0320i)13-s + (1.09 + 0.354i)14-s + (−0.333 − 1.43i)15-s + (−0.576 + 0.418i)16-s + (−0.147 − 0.0234i)17-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)(−0.104−0.994i)Λ(2−s)
Λ(s)=(=(55s/2ΓC(s+1/2)L(s)(−0.104−0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
−0.104−0.994i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ55(18,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :1/2), −0.104−0.994i)
|
Particular Values
L(1) |
≈ |
0.490778+0.545097i |
L(21) |
≈ |
0.490778+0.545097i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.536−2.17i)T |
| 11 | 1+(−0.937+3.18i)T |
good | 2 | 1+(−0.193−1.22i)T+(−1.90+0.618i)T2 |
| 3 | 1+(2.26−1.15i)T+(1.76−2.42i)T2 |
| 7 | 1+(−1.57+3.09i)T+(−4.11−5.66i)T2 |
| 13 | 1+(−0.730+0.115i)T+(12.3−4.01i)T2 |
| 17 | 1+(0.609+0.0965i)T+(16.1+5.25i)T2 |
| 19 | 1+(0.971−2.99i)T+(−15.3−11.1i)T2 |
| 23 | 1+(4.30+4.30i)T+23iT2 |
| 29 | 1+(−0.896−2.75i)T+(−23.4+17.0i)T2 |
| 31 | 1+(2.45+1.78i)T+(9.57+29.4i)T2 |
| 37 | 1+(−2.04−1.04i)T+(21.7+29.9i)T2 |
| 41 | 1+(−0.970−0.315i)T+(33.1+24.0i)T2 |
| 43 | 1+(−4.07+4.07i)T−43iT2 |
| 47 | 1+(0.492+0.967i)T+(−27.6+38.0i)T2 |
| 53 | 1+(0.671+4.24i)T+(−50.4+16.3i)T2 |
| 59 | 1+(7.03−2.28i)T+(47.7−34.6i)T2 |
| 61 | 1+(2.20+3.03i)T+(−18.8+58.0i)T2 |
| 67 | 1+(9.39−9.39i)T−67iT2 |
| 71 | 1+(2.92−2.12i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.479+0.244i)T+(42.9+59.0i)T2 |
| 79 | 1+(−9.87−7.17i)T+(24.4+75.1i)T2 |
| 83 | 1+(2.50−15.8i)T+(−78.9−25.6i)T2 |
| 89 | 1+14.6iT−89T2 |
| 97 | 1+(−14.1+2.24i)T+(92.2−29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.89259832763877706051763158298, −14.65413308887404888315656224707, −13.92220949713260417919998689891, −11.74948806620884617055424470831, −10.86936945921835702540106847633, −10.44607456939842040682535768156, −7.972168957312376680585780671014, −6.70492514948441848543379614814, −5.78679632060962614644794923866, −4.19362398092889181747246390347,
1.75439518332264450609609235534, 4.65390929457750357430755361487, 6.03423753603751555224832820628, 7.58517741399089727199820945541, 9.307876682657034053209906588818, 10.98083249162101526466197397520, 11.95663211049707511257133762512, 12.20494485567282101624870350723, 13.22053364856700552030768652736, 15.30024077763471424241189454443