L(s) = 1 | − 3·2-s − 7·4-s + 25·5-s − 78·7-s + 69·8-s + 81·9-s − 75·10-s + 121·11-s + 162·13-s + 234·14-s − 95·16-s + 402·17-s − 243·18-s − 175·20-s − 363·22-s + 625·25-s − 486·26-s + 546·28-s − 1.59e3·31-s − 819·32-s − 1.20e3·34-s − 1.95e3·35-s − 567·36-s + 1.72e3·40-s + 3.52e3·43-s − 847·44-s + 2.02e3·45-s + ⋯ |
L(s) = 1 | − 3/4·2-s − 0.437·4-s + 5-s − 1.59·7-s + 1.07·8-s + 9-s − 3/4·10-s + 11-s + 0.958·13-s + 1.19·14-s − 0.371·16-s + 1.39·17-s − 3/4·18-s − 0.437·20-s − 3/4·22-s + 25-s − 0.718·26-s + 0.696·28-s − 1.66·31-s − 0.799·32-s − 1.04·34-s − 1.59·35-s − 0.437·36-s + 1.07·40-s + 1.90·43-s − 0.437·44-s + 45-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)Λ(5−s)
Λ(s)=(=(55s/2ΓC(s+2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
1
|
Analytic conductor: |
5.68534 |
Root analytic conductor: |
2.38439 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ55(54,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :2), 1)
|
Particular Values
L(25) |
≈ |
1.090093156 |
L(21) |
≈ |
1.090093156 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−p2T |
| 11 | 1−p2T |
good | 2 | 1+3T+p4T2 |
| 3 | (1−p2T)(1+p2T) |
| 7 | 1+78T+p4T2 |
| 13 | 1−162T+p4T2 |
| 17 | 1−402T+p4T2 |
| 19 | (1−p2T)(1+p2T) |
| 23 | (1−p2T)(1+p2T) |
| 29 | (1−p2T)(1+p2T) |
| 31 | 1+1598T+p4T2 |
| 37 | (1−p2T)(1+p2T) |
| 41 | (1−p2T)(1+p2T) |
| 43 | 1−3522T+p4T2 |
| 47 | (1−p2T)(1+p2T) |
| 53 | (1−p2T)(1+p2T) |
| 59 | 1−3442T+p4T2 |
| 61 | (1−p2T)(1+p2T) |
| 67 | (1−p2T)(1+p2T) |
| 71 | 1+3998T+p4T2 |
| 73 | 1+10638T+p4T2 |
| 79 | (1−p2T)(1+p2T) |
| 83 | 1−13602T+p4T2 |
| 89 | 1+15838T+p4T2 |
| 97 | (1−p2T)(1+p2T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.37037296408660213649676044466, −13.30806682235148526042100439220, −12.60188675466443481024029637777, −10.50010570175545202432239091031, −9.656419559294173182443187840980, −9.041619573360570007835362288547, −7.16804240128046363763499258564, −5.88762702237267445877934833591, −3.77131252371471343448595855825, −1.20089647082121139804533191441,
1.20089647082121139804533191441, 3.77131252371471343448595855825, 5.88762702237267445877934833591, 7.16804240128046363763499258564, 9.041619573360570007835362288547, 9.656419559294173182443187840980, 10.50010570175545202432239091031, 12.60188675466443481024029637777, 13.30806682235148526042100439220, 14.37037296408660213649676044466