Properties

Label 2-55-55.54-c4-0-8
Degree $2$
Conductor $55$
Sign $1$
Analytic cond. $5.68534$
Root an. cond. $2.38439$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 7·4-s + 25·5-s − 78·7-s + 69·8-s + 81·9-s − 75·10-s + 121·11-s + 162·13-s + 234·14-s − 95·16-s + 402·17-s − 243·18-s − 175·20-s − 363·22-s + 625·25-s − 486·26-s + 546·28-s − 1.59e3·31-s − 819·32-s − 1.20e3·34-s − 1.95e3·35-s − 567·36-s + 1.72e3·40-s + 3.52e3·43-s − 847·44-s + 2.02e3·45-s + ⋯
L(s)  = 1  − 3/4·2-s − 0.437·4-s + 5-s − 1.59·7-s + 1.07·8-s + 9-s − 3/4·10-s + 11-s + 0.958·13-s + 1.19·14-s − 0.371·16-s + 1.39·17-s − 3/4·18-s − 0.437·20-s − 3/4·22-s + 25-s − 0.718·26-s + 0.696·28-s − 1.66·31-s − 0.799·32-s − 1.04·34-s − 1.59·35-s − 0.437·36-s + 1.07·40-s + 1.90·43-s − 0.437·44-s + 45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $1$
Analytic conductor: \(5.68534\)
Root analytic conductor: \(2.38439\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{55} (54, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.090093156\)
\(L(\frac12)\) \(\approx\) \(1.090093156\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - p^{2} T \)
11 \( 1 - p^{2} T \)
good2 \( 1 + 3 T + p^{4} T^{2} \)
3 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
7 \( 1 + 78 T + p^{4} T^{2} \)
13 \( 1 - 162 T + p^{4} T^{2} \)
17 \( 1 - 402 T + p^{4} T^{2} \)
19 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
23 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
29 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
31 \( 1 + 1598 T + p^{4} T^{2} \)
37 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
41 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
43 \( 1 - 3522 T + p^{4} T^{2} \)
47 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
53 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
59 \( 1 - 3442 T + p^{4} T^{2} \)
61 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
67 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
71 \( 1 + 3998 T + p^{4} T^{2} \)
73 \( 1 + 10638 T + p^{4} T^{2} \)
79 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
83 \( 1 - 13602 T + p^{4} T^{2} \)
89 \( 1 + 15838 T + p^{4} T^{2} \)
97 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.37037296408660213649676044466, −13.30806682235148526042100439220, −12.60188675466443481024029637777, −10.50010570175545202432239091031, −9.656419559294173182443187840980, −9.041619573360570007835362288547, −7.16804240128046363763499258564, −5.88762702237267445877934833591, −3.77131252371471343448595855825, −1.20089647082121139804533191441, 1.20089647082121139804533191441, 3.77131252371471343448595855825, 5.88762702237267445877934833591, 7.16804240128046363763499258564, 9.041619573360570007835362288547, 9.656419559294173182443187840980, 10.50010570175545202432239091031, 12.60188675466443481024029637777, 13.30806682235148526042100439220, 14.37037296408660213649676044466

Graph of the $Z$-function along the critical line