Properties

Label 2-55-55.54-c8-0-21
Degree $2$
Conductor $55$
Sign $1$
Analytic cond. $22.4058$
Root an. cond. $4.73347$
Motivic weight $8$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 23·2-s + 273·4-s + 625·5-s + 1.28e3·7-s − 391·8-s + 6.56e3·9-s − 1.43e4·10-s + 1.46e4·11-s − 3.08e4·13-s − 2.94e4·14-s − 6.08e4·16-s − 5.43e3·17-s − 1.50e5·18-s + 1.70e5·20-s − 3.36e5·22-s + 3.90e5·25-s + 7.10e5·26-s + 3.49e5·28-s + 7.06e5·31-s + 1.50e6·32-s + 1.25e5·34-s + 8.01e5·35-s + 1.79e6·36-s − 2.44e5·40-s + 5.56e6·43-s + 3.99e6·44-s + 4.10e6·45-s + ⋯
L(s)  = 1  − 1.43·2-s + 1.06·4-s + 5-s + 0.533·7-s − 0.0954·8-s + 9-s − 1.43·10-s + 11-s − 1.08·13-s − 0.767·14-s − 0.929·16-s − 0.0651·17-s − 1.43·18-s + 1.06·20-s − 1.43·22-s + 25-s + 1.55·26-s + 0.569·28-s + 0.765·31-s + 1.43·32-s + 0.0935·34-s + 0.533·35-s + 1.06·36-s − 0.0954·40-s + 1.62·43-s + 1.06·44-s + 45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $1$
Analytic conductor: \(22.4058\)
Root analytic conductor: \(4.73347\)
Motivic weight: \(8\)
Rational: yes
Arithmetic: yes
Character: $\chi_{55} (54, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :4),\ 1)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.306023219\)
\(L(\frac12)\) \(\approx\) \(1.306023219\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - p^{4} T \)
11 \( 1 - p^{4} T \)
good2 \( 1 + 23 T + p^{8} T^{2} \)
3 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
7 \( 1 - 1282 T + p^{8} T^{2} \)
13 \( 1 + 30878 T + p^{8} T^{2} \)
17 \( 1 + 5438 T + p^{8} T^{2} \)
19 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
23 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
29 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
31 \( 1 - 706562 T + p^{8} T^{2} \)
37 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
41 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
43 \( 1 - 5566882 T + p^{8} T^{2} \)
47 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
53 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
59 \( 1 + 12387358 T + p^{8} T^{2} \)
61 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
67 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
71 \( 1 + 34839358 T + p^{8} T^{2} \)
73 \( 1 - 56370562 T + p^{8} T^{2} \)
79 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
83 \( 1 - 90097762 T + p^{8} T^{2} \)
89 \( 1 - 125357762 T + p^{8} T^{2} \)
97 \( ( 1 - p^{4} T )( 1 + p^{4} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.66753412069754556491935671653, −12.24400623577549414426302551860, −10.79307235445606406743539395895, −9.801606776071171627755142298209, −9.127689559007839723887304524961, −7.68438297925489974175425333354, −6.57352326877886123066920995327, −4.66480089888989234981502317529, −2.08299614635532685606586800263, −1.03027297756288283171345149524, 1.03027297756288283171345149524, 2.08299614635532685606586800263, 4.66480089888989234981502317529, 6.57352326877886123066920995327, 7.68438297925489974175425333354, 9.127689559007839723887304524961, 9.801606776071171627755142298209, 10.79307235445606406743539395895, 12.24400623577549414426302551860, 13.66753412069754556491935671653

Graph of the $Z$-function along the critical line