L(s) = 1 | − 23·2-s + 273·4-s + 625·5-s + 1.28e3·7-s − 391·8-s + 6.56e3·9-s − 1.43e4·10-s + 1.46e4·11-s − 3.08e4·13-s − 2.94e4·14-s − 6.08e4·16-s − 5.43e3·17-s − 1.50e5·18-s + 1.70e5·20-s − 3.36e5·22-s + 3.90e5·25-s + 7.10e5·26-s + 3.49e5·28-s + 7.06e5·31-s + 1.50e6·32-s + 1.25e5·34-s + 8.01e5·35-s + 1.79e6·36-s − 2.44e5·40-s + 5.56e6·43-s + 3.99e6·44-s + 4.10e6·45-s + ⋯ |
L(s) = 1 | − 1.43·2-s + 1.06·4-s + 5-s + 0.533·7-s − 0.0954·8-s + 9-s − 1.43·10-s + 11-s − 1.08·13-s − 0.767·14-s − 0.929·16-s − 0.0651·17-s − 1.43·18-s + 1.06·20-s − 1.43·22-s + 25-s + 1.55·26-s + 0.569·28-s + 0.765·31-s + 1.43·32-s + 0.0935·34-s + 0.533·35-s + 1.06·36-s − 0.0954·40-s + 1.62·43-s + 1.06·44-s + 45-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)Λ(9−s)
Λ(s)=(=(55s/2ΓC(s+4)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
1
|
Analytic conductor: |
22.4058 |
Root analytic conductor: |
4.73347 |
Motivic weight: |
8 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ55(54,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :4), 1)
|
Particular Values
L(29) |
≈ |
1.306023219 |
L(21) |
≈ |
1.306023219 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−p4T |
| 11 | 1−p4T |
good | 2 | 1+23T+p8T2 |
| 3 | (1−p4T)(1+p4T) |
| 7 | 1−1282T+p8T2 |
| 13 | 1+30878T+p8T2 |
| 17 | 1+5438T+p8T2 |
| 19 | (1−p4T)(1+p4T) |
| 23 | (1−p4T)(1+p4T) |
| 29 | (1−p4T)(1+p4T) |
| 31 | 1−706562T+p8T2 |
| 37 | (1−p4T)(1+p4T) |
| 41 | (1−p4T)(1+p4T) |
| 43 | 1−5566882T+p8T2 |
| 47 | (1−p4T)(1+p4T) |
| 53 | (1−p4T)(1+p4T) |
| 59 | 1+12387358T+p8T2 |
| 61 | (1−p4T)(1+p4T) |
| 67 | (1−p4T)(1+p4T) |
| 71 | 1+34839358T+p8T2 |
| 73 | 1−56370562T+p8T2 |
| 79 | (1−p4T)(1+p4T) |
| 83 | 1−90097762T+p8T2 |
| 89 | 1−125357762T+p8T2 |
| 97 | (1−p4T)(1+p4T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.66753412069754556491935671653, −12.24400623577549414426302551860, −10.79307235445606406743539395895, −9.801606776071171627755142298209, −9.127689559007839723887304524961, −7.68438297925489974175425333354, −6.57352326877886123066920995327, −4.66480089888989234981502317529, −2.08299614635532685606586800263, −1.03027297756288283171345149524,
1.03027297756288283171345149524, 2.08299614635532685606586800263, 4.66480089888989234981502317529, 6.57352326877886123066920995327, 7.68438297925489974175425333354, 9.127689559007839723887304524961, 9.801606776071171627755142298209, 10.79307235445606406743539395895, 12.24400623577549414426302551860, 13.66753412069754556491935671653