L(s) = 1 | − 2-s + 3-s + 4-s − 6-s − 3·7-s − 8-s − 2·9-s + 11-s + 12-s + 6·13-s + 3·14-s + 16-s + 7·17-s + 2·18-s + 5·19-s − 3·21-s − 22-s + 6·23-s − 24-s − 6·26-s − 5·27-s − 3·28-s + 5·29-s − 3·31-s − 32-s + 33-s − 7·34-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.13·7-s − 0.353·8-s − 2/3·9-s + 0.301·11-s + 0.288·12-s + 1.66·13-s + 0.801·14-s + 1/4·16-s + 1.69·17-s + 0.471·18-s + 1.14·19-s − 0.654·21-s − 0.213·22-s + 1.25·23-s − 0.204·24-s − 1.17·26-s − 0.962·27-s − 0.566·28-s + 0.928·29-s − 0.538·31-s − 0.176·32-s + 0.174·33-s − 1.20·34-s + ⋯ |
Λ(s)=(=(550s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(550s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.216011166 |
L(21) |
≈ |
1.216011166 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
| 11 | 1−T |
good | 3 | 1−T+pT2 |
| 7 | 1+3T+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1−7T+pT2 |
| 19 | 1−5T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1−5T+pT2 |
| 31 | 1+3T+pT2 |
| 37 | 1+3T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1−T+pT2 |
| 59 | 1+10T+pT2 |
| 61 | 1−7T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1−7T+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1−10T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1−12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.62761614296171945475675158355, −9.696869758195084295021589593937, −9.051313158030191365780373658814, −8.319735201663290337491520314526, −7.35838560113530362823348866724, −6.32452856749704006618306134382, −5.51294812234663797155432190910, −3.46996281594193181675719351221, −3.07694177217990984214438626883, −1.14442070453994046878747912184,
1.14442070453994046878747912184, 3.07694177217990984214438626883, 3.46996281594193181675719351221, 5.51294812234663797155432190910, 6.32452856749704006618306134382, 7.35838560113530362823348866724, 8.319735201663290337491520314526, 9.051313158030191365780373658814, 9.696869758195084295021589593937, 10.62761614296171945475675158355