Properties

Label 2-560-1.1-c1-0-2
Degree $2$
Conductor $560$
Sign $1$
Analytic cond. $4.47162$
Root an. cond. $2.11462$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s − 2·9-s + 3·11-s + 5·13-s + 15-s + 3·17-s − 2·19-s + 21-s + 6·23-s + 25-s + 5·27-s + 3·29-s + 4·31-s − 3·33-s + 35-s + 2·37-s − 5·39-s − 12·41-s + 10·43-s + 2·45-s − 9·47-s + 49-s − 3·51-s + 12·53-s − 3·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s + 0.904·11-s + 1.38·13-s + 0.258·15-s + 0.727·17-s − 0.458·19-s + 0.218·21-s + 1.25·23-s + 1/5·25-s + 0.962·27-s + 0.557·29-s + 0.718·31-s − 0.522·33-s + 0.169·35-s + 0.328·37-s − 0.800·39-s − 1.87·41-s + 1.52·43-s + 0.298·45-s − 1.31·47-s + 1/7·49-s − 0.420·51-s + 1.64·53-s − 0.404·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(4.47162\)
Root analytic conductor: \(2.11462\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.102522138\)
\(L(\frac12)\) \(\approx\) \(1.102522138\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + 9 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96922517526030591560500511793, −10.00137734072722000076745491348, −8.829468246037740149648448974500, −8.322081181544343689933636986956, −6.91010810779795429087322035266, −6.26051630300961999746999469622, −5.29742546009269090365766846421, −4.02723544557718882488682513095, −3.04856603410542935889592969685, −1.00806560019316329290903940266, 1.00806560019316329290903940266, 3.04856603410542935889592969685, 4.02723544557718882488682513095, 5.29742546009269090365766846421, 6.26051630300961999746999469622, 6.91010810779795429087322035266, 8.322081181544343689933636986956, 8.829468246037740149648448974500, 10.00137734072722000076745491348, 10.96922517526030591560500511793

Graph of the $Z$-function along the critical line