Properties

Label 2-560-1.1-c3-0-33
Degree $2$
Conductor $560$
Sign $-1$
Analytic cond. $33.0410$
Root an. cond. $5.74813$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.77·3-s − 5·5-s + 7·7-s + 6.31·9-s − 6.22·11-s − 52.5·13-s − 28.8·15-s − 71.2·17-s − 59.5·19-s + 40.4·21-s − 61.3·23-s + 25·25-s − 119.·27-s + 162.·29-s − 91.6·31-s − 35.9·33-s − 35·35-s + 148.·37-s − 303.·39-s − 140.·41-s − 210.·43-s − 31.5·45-s − 98.2·47-s + 49·49-s − 411.·51-s + 87.0·53-s + 31.1·55-s + ⋯
L(s)  = 1  + 1.11·3-s − 0.447·5-s + 0.377·7-s + 0.233·9-s − 0.170·11-s − 1.12·13-s − 0.496·15-s − 1.01·17-s − 0.718·19-s + 0.419·21-s − 0.556·23-s + 0.200·25-s − 0.850·27-s + 1.04·29-s − 0.530·31-s − 0.189·33-s − 0.169·35-s + 0.661·37-s − 1.24·39-s − 0.537·41-s − 0.745·43-s − 0.104·45-s − 0.304·47-s + 0.142·49-s − 1.12·51-s + 0.225·53-s + 0.0763·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(33.0410\)
Root analytic conductor: \(5.74813\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 560,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 - 7T \)
good3 \( 1 - 5.77T + 27T^{2} \)
11 \( 1 + 6.22T + 1.33e3T^{2} \)
13 \( 1 + 52.5T + 2.19e3T^{2} \)
17 \( 1 + 71.2T + 4.91e3T^{2} \)
19 \( 1 + 59.5T + 6.85e3T^{2} \)
23 \( 1 + 61.3T + 1.21e4T^{2} \)
29 \( 1 - 162.T + 2.43e4T^{2} \)
31 \( 1 + 91.6T + 2.97e4T^{2} \)
37 \( 1 - 148.T + 5.06e4T^{2} \)
41 \( 1 + 140.T + 6.89e4T^{2} \)
43 \( 1 + 210.T + 7.95e4T^{2} \)
47 \( 1 + 98.2T + 1.03e5T^{2} \)
53 \( 1 - 87.0T + 1.48e5T^{2} \)
59 \( 1 + 734.T + 2.05e5T^{2} \)
61 \( 1 - 83.5T + 2.26e5T^{2} \)
67 \( 1 - 79.9T + 3.00e5T^{2} \)
71 \( 1 - 211.T + 3.57e5T^{2} \)
73 \( 1 + 213.T + 3.89e5T^{2} \)
79 \( 1 + 517.T + 4.93e5T^{2} \)
83 \( 1 - 1.03e3T + 5.71e5T^{2} \)
89 \( 1 - 1.34e3T + 7.04e5T^{2} \)
97 \( 1 + 1.86e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.774329938542623185088757098590, −8.875512983146597896112131347947, −8.197503178125327577954562084434, −7.48833513756847185227998788075, −6.43444094008622001560087294065, −4.98357693586686153095302738109, −4.09182737630779287535521394473, −2.87827625179097000567287514037, −1.99366228890928523755141594389, 0, 1.99366228890928523755141594389, 2.87827625179097000567287514037, 4.09182737630779287535521394473, 4.98357693586686153095302738109, 6.43444094008622001560087294065, 7.48833513756847185227998788075, 8.197503178125327577954562084434, 8.875512983146597896112131347947, 9.774329938542623185088757098590

Graph of the $Z$-function along the critical line