Properties

Label 2-560-1.1-c7-0-50
Degree $2$
Conductor $560$
Sign $1$
Analytic cond. $174.935$
Root an. cond. $13.2263$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 93·3-s + 125·5-s − 343·7-s + 6.46e3·9-s + 2.16e3·11-s − 1.66e3·13-s + 1.16e4·15-s − 3.57e4·17-s − 2.02e4·19-s − 3.18e4·21-s + 4.21e4·23-s + 1.56e4·25-s + 3.97e5·27-s − 1.11e5·29-s + 2.69e5·31-s + 2.01e5·33-s − 4.28e4·35-s + 5.32e5·37-s − 1.54e5·39-s + 1.58e5·41-s + 5.21e5·43-s + 8.07e5·45-s + 9.39e5·47-s + 1.17e5·49-s − 3.32e6·51-s − 4.08e5·53-s + 2.70e5·55-s + ⋯
L(s)  = 1  + 1.98·3-s + 0.447·5-s − 0.377·7-s + 2.95·9-s + 0.490·11-s − 0.209·13-s + 0.889·15-s − 1.76·17-s − 0.676·19-s − 0.751·21-s + 0.722·23-s + 1/5·25-s + 3.88·27-s − 0.851·29-s + 1.62·31-s + 0.976·33-s − 0.169·35-s + 1.72·37-s − 0.416·39-s + 0.358·41-s + 1.00·43-s + 1.32·45-s + 1.32·47-s + 1/7·49-s − 3.51·51-s − 0.376·53-s + 0.219·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(174.935\)
Root analytic conductor: \(13.2263\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(6.023461239\)
\(L(\frac12)\) \(\approx\) \(6.023461239\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p^{3} T \)
7 \( 1 + p^{3} T \)
good3 \( 1 - 31 p T + p^{7} T^{2} \)
11 \( 1 - 197 p T + p^{7} T^{2} \)
13 \( 1 + 1661 T + p^{7} T^{2} \)
17 \( 1 + 35771 T + p^{7} T^{2} \)
19 \( 1 + 20222 T + p^{7} T^{2} \)
23 \( 1 - 42130 T + p^{7} T^{2} \)
29 \( 1 + 111789 T + p^{7} T^{2} \)
31 \( 1 - 269504 T + p^{7} T^{2} \)
37 \( 1 - 532774 T + p^{7} T^{2} \)
41 \( 1 - 158056 T + p^{7} T^{2} \)
43 \( 1 - 521874 T + p^{7} T^{2} \)
47 \( 1 - 939733 T + p^{7} T^{2} \)
53 \( 1 + 408384 T + p^{7} T^{2} \)
59 \( 1 - 522172 T + p^{7} T^{2} \)
61 \( 1 - 350080 T + p^{7} T^{2} \)
67 \( 1 - 3931176 T + p^{7} T^{2} \)
71 \( 1 + 1194016 T + p^{7} T^{2} \)
73 \( 1 - 998350 T + p^{7} T^{2} \)
79 \( 1 - 2120709 T + p^{7} T^{2} \)
83 \( 1 - 1746708 T + p^{7} T^{2} \)
89 \( 1 + 10077740 T + p^{7} T^{2} \)
97 \( 1 + 6238295 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.310856142700045964390073704600, −8.938784345521179340593204862736, −8.047947384715294617251081455186, −7.06989129710357733395268937244, −6.34828391652912194456009179766, −4.55782253145449557394573063654, −3.91989989836331594225487743865, −2.65823716486276100911316390675, −2.23930582823280443556232223492, −0.984664456895481641452636411850, 0.984664456895481641452636411850, 2.23930582823280443556232223492, 2.65823716486276100911316390675, 3.91989989836331594225487743865, 4.55782253145449557394573063654, 6.34828391652912194456009179766, 7.06989129710357733395268937244, 8.047947384715294617251081455186, 8.938784345521179340593204862736, 9.310856142700045964390073704600

Graph of the $Z$-function along the critical line