Properties

Label 2-560-35.34-c0-0-0
Degree $2$
Conductor $560$
Sign $1$
Analytic cond. $0.279476$
Root an. cond. $0.528655$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 7-s + 11-s + 13-s + 15-s + 17-s − 21-s + 25-s + 27-s − 29-s − 33-s − 35-s − 39-s − 47-s + 49-s − 51-s − 55-s − 65-s − 2·71-s − 2·73-s − 75-s + 77-s + 79-s − 81-s + 2·83-s − 85-s + ⋯
L(s)  = 1  − 3-s − 5-s + 7-s + 11-s + 13-s + 15-s + 17-s − 21-s + 25-s + 27-s − 29-s − 33-s − 35-s − 39-s − 47-s + 49-s − 51-s − 55-s − 65-s − 2·71-s − 2·73-s − 75-s + 77-s + 79-s − 81-s + 2·83-s − 85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(0.279476\)
Root analytic conductor: \(0.528655\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{560} (209, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.6595653566\)
\(L(\frac12)\) \(\approx\) \(0.6595653566\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
good3 \( 1 + T + T^{2} \)
11 \( 1 - T + T^{2} \)
13 \( 1 - T + T^{2} \)
17 \( 1 - T + T^{2} \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( 1 + T + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )( 1 + T ) \)
47 \( 1 + T + T^{2} \)
53 \( ( 1 - T )( 1 + T ) \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( ( 1 + T )^{2} \)
73 \( ( 1 + T )^{2} \)
79 \( 1 - T + T^{2} \)
83 \( ( 1 - T )^{2} \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( 1 - T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.17796587863549209637293452690, −10.48961318140679390867228266638, −9.079900869336769123594498457421, −8.269452619320731637465393114544, −7.41648394388131976267690221315, −6.33913726419224037569636207263, −5.43776788456016476213579825651, −4.43264569837597764632094150272, −3.44536275764821128051758051565, −1.27727610380497217722898197237, 1.27727610380497217722898197237, 3.44536275764821128051758051565, 4.43264569837597764632094150272, 5.43776788456016476213579825651, 6.33913726419224037569636207263, 7.41648394388131976267690221315, 8.269452619320731637465393114544, 9.079900869336769123594498457421, 10.48961318140679390867228266638, 11.17796587863549209637293452690

Graph of the $Z$-function along the critical line