Properties

Label 2-560-35.34-c2-0-28
Degree $2$
Conductor $560$
Sign $1$
Analytic cond. $15.2588$
Root an. cond. $3.90626$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5·5-s + 7·7-s − 8·9-s + 13·11-s + 19·13-s + 5·15-s − 29·17-s + 7·21-s + 25·25-s − 17·27-s + 23·29-s + 13·33-s + 35·35-s + 19·39-s − 40·45-s − 31·47-s + 49·49-s − 29·51-s + 65·55-s − 56·63-s + 95·65-s − 2·71-s + 34·73-s + 25·75-s + 91·77-s + 157·79-s + ⋯
L(s)  = 1  + 1/3·3-s + 5-s + 7-s − 8/9·9-s + 1.18·11-s + 1.46·13-s + 1/3·15-s − 1.70·17-s + 1/3·21-s + 25-s − 0.629·27-s + 0.793·29-s + 0.393·33-s + 35-s + 0.487·39-s − 8/9·45-s − 0.659·47-s + 49-s − 0.568·51-s + 1.18·55-s − 8/9·63-s + 1.46·65-s − 0.0281·71-s + 0.465·73-s + 1/3·75-s + 1.18·77-s + 1.98·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 560 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(560\)    =    \(2^{4} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(15.2588\)
Root analytic conductor: \(3.90626\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{560} (209, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 560,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.722681966\)
\(L(\frac12)\) \(\approx\) \(2.722681966\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - p T \)
7 \( 1 - p T \)
good3 \( 1 - T + p^{2} T^{2} \)
11 \( 1 - 13 T + p^{2} T^{2} \)
13 \( 1 - 19 T + p^{2} T^{2} \)
17 \( 1 + 29 T + p^{2} T^{2} \)
19 \( ( 1 - p T )( 1 + p T ) \)
23 \( ( 1 - p T )( 1 + p T ) \)
29 \( 1 - 23 T + p^{2} T^{2} \)
31 \( ( 1 - p T )( 1 + p T ) \)
37 \( ( 1 - p T )( 1 + p T ) \)
41 \( ( 1 - p T )( 1 + p T ) \)
43 \( ( 1 - p T )( 1 + p T ) \)
47 \( 1 + 31 T + p^{2} T^{2} \)
53 \( ( 1 - p T )( 1 + p T ) \)
59 \( ( 1 - p T )( 1 + p T ) \)
61 \( ( 1 - p T )( 1 + p T ) \)
67 \( ( 1 - p T )( 1 + p T ) \)
71 \( 1 + 2 T + p^{2} T^{2} \)
73 \( 1 - 34 T + p^{2} T^{2} \)
79 \( 1 - 157 T + p^{2} T^{2} \)
83 \( 1 - 86 T + p^{2} T^{2} \)
89 \( ( 1 - p T )( 1 + p T ) \)
97 \( 1 + 149 T + p^{2} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81774139496893165209540094579, −9.419704847457727036852785059137, −8.780413284014397940452448969180, −8.247705902108198010203357563341, −6.68960528705947591122207616241, −6.10040190795776390739412804847, −4.96712730622036284748748766932, −3.82847740500390756064826557597, −2.39859128913470652638872784326, −1.33088168508529191997763161761, 1.33088168508529191997763161761, 2.39859128913470652638872784326, 3.82847740500390756064826557597, 4.96712730622036284748748766932, 6.10040190795776390739412804847, 6.68960528705947591122207616241, 8.247705902108198010203357563341, 8.780413284014397940452448969180, 9.419704847457727036852785059137, 10.81774139496893165209540094579

Graph of the $Z$-function along the critical line