L(s) = 1 | + 3-s + 5·5-s + 7·7-s − 8·9-s + 13·11-s + 19·13-s + 5·15-s − 29·17-s + 7·21-s + 25·25-s − 17·27-s + 23·29-s + 13·33-s + 35·35-s + 19·39-s − 40·45-s − 31·47-s + 49·49-s − 29·51-s + 65·55-s − 56·63-s + 95·65-s − 2·71-s + 34·73-s + 25·75-s + 91·77-s + 157·79-s + ⋯ |
L(s) = 1 | + 1/3·3-s + 5-s + 7-s − 8/9·9-s + 1.18·11-s + 1.46·13-s + 1/3·15-s − 1.70·17-s + 1/3·21-s + 25-s − 0.629·27-s + 0.793·29-s + 0.393·33-s + 35-s + 0.487·39-s − 8/9·45-s − 0.659·47-s + 49-s − 0.568·51-s + 1.18·55-s − 8/9·63-s + 1.46·65-s − 0.0281·71-s + 0.465·73-s + 1/3·75-s + 1.18·77-s + 1.98·79-s + ⋯ |
Λ(s)=(=(560s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(560s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
560
= 24⋅5⋅7
|
Sign: |
1
|
Analytic conductor: |
15.2588 |
Root analytic conductor: |
3.90626 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ560(209,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 560, ( :1), 1)
|
Particular Values
L(23) |
≈ |
2.722681966 |
L(21) |
≈ |
2.722681966 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−pT |
| 7 | 1−pT |
good | 3 | 1−T+p2T2 |
| 11 | 1−13T+p2T2 |
| 13 | 1−19T+p2T2 |
| 17 | 1+29T+p2T2 |
| 19 | (1−pT)(1+pT) |
| 23 | (1−pT)(1+pT) |
| 29 | 1−23T+p2T2 |
| 31 | (1−pT)(1+pT) |
| 37 | (1−pT)(1+pT) |
| 41 | (1−pT)(1+pT) |
| 43 | (1−pT)(1+pT) |
| 47 | 1+31T+p2T2 |
| 53 | (1−pT)(1+pT) |
| 59 | (1−pT)(1+pT) |
| 61 | (1−pT)(1+pT) |
| 67 | (1−pT)(1+pT) |
| 71 | 1+2T+p2T2 |
| 73 | 1−34T+p2T2 |
| 79 | 1−157T+p2T2 |
| 83 | 1−86T+p2T2 |
| 89 | (1−pT)(1+pT) |
| 97 | 1+149T+p2T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.81774139496893165209540094579, −9.419704847457727036852785059137, −8.780413284014397940452448969180, −8.247705902108198010203357563341, −6.68960528705947591122207616241, −6.10040190795776390739412804847, −4.96712730622036284748748766932, −3.82847740500390756064826557597, −2.39859128913470652638872784326, −1.33088168508529191997763161761,
1.33088168508529191997763161761, 2.39859128913470652638872784326, 3.82847740500390756064826557597, 4.96712730622036284748748766932, 6.10040190795776390739412804847, 6.68960528705947591122207616241, 8.247705902108198010203357563341, 8.780413284014397940452448969180, 9.419704847457727036852785059137, 10.81774139496893165209540094579