L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s + 11-s + 12-s − 6·13-s − 15-s + 16-s + 17-s + 18-s − 20-s + 22-s − 8·23-s + 24-s + 25-s − 6·26-s + 27-s − 6·29-s − 30-s − 4·31-s + 32-s + 33-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s − 1.66·13-s − 0.258·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s − 0.223·20-s + 0.213·22-s − 1.66·23-s + 0.204·24-s + 1/5·25-s − 1.17·26-s + 0.192·27-s − 1.11·29-s − 0.182·30-s − 0.718·31-s + 0.176·32-s + 0.174·33-s + ⋯ |
Λ(s)=(=(5610s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5610s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 5 | 1+T |
| 11 | 1−T |
| 17 | 1−T |
good | 7 | 1+pT2 |
| 13 | 1+6T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1+6T+pT2 |
| 31 | 1+4T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+8T+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1−8T+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84252706042761906997047180712, −7.09356023726554257760712127854, −6.41917811141756616347522529543, −5.45960223715275273534634780220, −4.79172099955020537806345076640, −4.00310702636647721065480037791, −3.39860484802407122485507683606, −2.44587792994532802113306372656, −1.72243927296666951440031206183, 0,
1.72243927296666951440031206183, 2.44587792994532802113306372656, 3.39860484802407122485507683606, 4.00310702636647721065480037791, 4.79172099955020537806345076640, 5.45960223715275273534634780220, 6.41917811141756616347522529543, 7.09356023726554257760712127854, 7.84252706042761906997047180712