L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s + 11-s + 12-s − 6·13-s − 15-s + 16-s + 17-s + 18-s − 20-s + 22-s − 8·23-s + 24-s + 25-s − 6·26-s + 27-s − 6·29-s − 30-s − 4·31-s + 32-s + 33-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s − 1.66·13-s − 0.258·15-s + 1/4·16-s + 0.242·17-s + 0.235·18-s − 0.223·20-s + 0.213·22-s − 1.66·23-s + 0.204·24-s + 1/5·25-s − 1.17·26-s + 0.192·27-s − 1.11·29-s − 0.182·30-s − 0.718·31-s + 0.176·32-s + 0.174·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 11 | \( 1 - T \) |
| 17 | \( 1 - T \) |
good | 7 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + 8 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 - 12 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 - 12 T + p T^{2} \) |
| 89 | \( 1 - 2 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.84252706042761906997047180712, −7.09356023726554257760712127854, −6.41917811141756616347522529543, −5.45960223715275273534634780220, −4.79172099955020537806345076640, −4.00310702636647721065480037791, −3.39860484802407122485507683606, −2.44587792994532802113306372656, −1.72243927296666951440031206183, 0,
1.72243927296666951440031206183, 2.44587792994532802113306372656, 3.39860484802407122485507683606, 4.00310702636647721065480037791, 4.79172099955020537806345076640, 5.45960223715275273534634780220, 6.41917811141756616347522529543, 7.09356023726554257760712127854, 7.84252706042761906997047180712