Properties

Label 2-5610-1.1-c1-0-21
Degree $2$
Conductor $5610$
Sign $1$
Analytic cond. $44.7960$
Root an. cond. $6.69298$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 11-s − 12-s + 2·13-s − 15-s + 16-s − 17-s − 18-s + 4·19-s + 20-s + 22-s + 8·23-s + 24-s + 25-s − 2·26-s − 27-s + 6·29-s + 30-s + 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s − 0.288·12-s + 0.554·13-s − 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 0.917·19-s + 0.223·20-s + 0.213·22-s + 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s − 0.192·27-s + 1.11·29-s + 0.182·30-s + 0.718·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5610 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5610\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(44.7960\)
Root analytic conductor: \(6.69298\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5610,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.331886409\)
\(L(\frac12)\) \(\approx\) \(1.331886409\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 + T \)
17 \( 1 + T \)
good7 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.263245916652137648768056548346, −7.35284289134810156595966275878, −6.73034022983676842963480004857, −6.17979730105811009829056357854, −5.24782021011330946478114343156, −4.78445616198338088336599939909, −3.47722324865831194243662083729, −2.72558452751296671636591477988, −1.57147525857787416140079301837, −0.75049248480518745009477310682, 0.75049248480518745009477310682, 1.57147525857787416140079301837, 2.72558452751296671636591477988, 3.47722324865831194243662083729, 4.78445616198338088336599939909, 5.24782021011330946478114343156, 6.17979730105811009829056357854, 6.73034022983676842963480004857, 7.35284289134810156595966275878, 8.263245916652137648768056548346

Graph of the $Z$-function along the critical line