L(s) = 1 | + (−1.75 + 2.08i)2-s + (−0.940 − 5.33i)4-s + (−2.08 + 1.74i)5-s + (−0.122 + 2.64i)7-s + (8.05 + 4.65i)8-s − 7.40i·10-s + (−0.0911 + 0.108i)11-s + (−0.695 + 1.91i)13-s + (−5.29 − 4.88i)14-s + (−13.6 + 4.96i)16-s − 4.00·17-s + 3.04i·19-s + (11.2 + 9.47i)20-s + (−0.0670 − 0.380i)22-s + (0.449 − 1.23i)23-s + ⋯ |
L(s) = 1 | + (−1.23 + 1.47i)2-s + (−0.470 − 2.66i)4-s + (−0.931 + 0.781i)5-s + (−0.0463 + 0.998i)7-s + (2.84 + 1.64i)8-s − 2.34i·10-s + (−0.0274 + 0.0327i)11-s + (−0.192 + 0.530i)13-s + (−1.41 − 1.30i)14-s + (−3.40 + 1.24i)16-s − 0.970·17-s + 0.698i·19-s + (2.52 + 2.11i)20-s + (−0.0142 − 0.0810i)22-s + (0.0936 − 0.257i)23-s + ⋯ |
Λ(s)=(=(567s/2ΓC(s)L(s)(0.377+0.925i)Λ(2−s)
Λ(s)=(=(567s/2ΓC(s+1/2)L(s)(0.377+0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
567
= 34⋅7
|
Sign: |
0.377+0.925i
|
Analytic conductor: |
4.52751 |
Root analytic conductor: |
2.12779 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ567(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 567, ( :1/2), 0.377+0.925i)
|
Particular Values
L(1) |
≈ |
0.0892191−0.0599668i |
L(21) |
≈ |
0.0892191−0.0599668i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(0.122−2.64i)T |
good | 2 | 1+(1.75−2.08i)T+(−0.347−1.96i)T2 |
| 5 | 1+(2.08−1.74i)T+(0.868−4.92i)T2 |
| 11 | 1+(0.0911−0.108i)T+(−1.91−10.8i)T2 |
| 13 | 1+(0.695−1.91i)T+(−9.95−8.35i)T2 |
| 17 | 1+4.00T+17T2 |
| 19 | 1−3.04iT−19T2 |
| 23 | 1+(−0.449+1.23i)T+(−17.6−14.7i)T2 |
| 29 | 1+(2.12+5.84i)T+(−22.2+18.6i)T2 |
| 31 | 1+(4.18−0.738i)T+(29.1−10.6i)T2 |
| 37 | 1+(−4.69+8.12i)T+(−18.5−32.0i)T2 |
| 41 | 1+(0.303+0.110i)T+(31.4+26.3i)T2 |
| 43 | 1+(−0.643+3.65i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−1.15+6.57i)T+(−44.1−16.0i)T2 |
| 53 | 1+(−6.59−3.81i)T+(26.5+45.8i)T2 |
| 59 | 1+(−6.06−2.20i)T+(45.1+37.9i)T2 |
| 61 | 1+(11.1+1.96i)T+(57.3+20.8i)T2 |
| 67 | 1+(1.37−1.15i)T+(11.6−65.9i)T2 |
| 71 | 1+(6.03−3.48i)T+(35.5−61.4i)T2 |
| 73 | 1+(−3.67+2.12i)T+(36.5−63.2i)T2 |
| 79 | 1+(11.4+9.62i)T+(13.7+77.7i)T2 |
| 83 | 1+(−0.966+0.351i)T+(63.5−53.3i)T2 |
| 89 | 1−5.17T+89T2 |
| 97 | 1+(7.25+1.27i)T+(91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.15042232218033412631045024794, −10.36238602859588296536387830451, −9.301579212611109357175167314630, −8.754795298948647257692457347929, −7.80188228549080934272581032195, −7.17798249169070824952853598656, −6.31079091789113851960367470807, −5.49084631023550192122111227386, −4.16065636769253926974219420638, −2.17930707537428840748659508052,
0.10105334363817669444513759141, 1.27629067560258458213442240908, 2.90805127001682678691111185565, 3.97174010120991882834799659003, 4.71613312086504508600646169651, 7.00036920054260489366172917668, 7.74944065035013051763593577045, 8.483984535996241089125654123381, 9.238820316038258853504510053987, 10.10046047965778791477394946756