L(s) = 1 | + (−0.866 − 1.5i)2-s + (−1 + 1.73i)4-s + (0.5 + 0.866i)7-s + 1.73·8-s + (0.866 + 1.5i)11-s + (0.866 − 1.5i)14-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)22-s + (−0.5 − 0.866i)25-s − 2·28-s + 37-s + (−0.5 − 0.866i)43-s − 3.46·44-s + (−0.499 + 0.866i)49-s + (−0.866 + 1.5i)50-s + ⋯ |
L(s) = 1 | + (−0.866 − 1.5i)2-s + (−1 + 1.73i)4-s + (0.5 + 0.866i)7-s + 1.73·8-s + (0.866 + 1.5i)11-s + (0.866 − 1.5i)14-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)22-s + (−0.5 − 0.866i)25-s − 2·28-s + 37-s + (−0.5 − 0.866i)43-s − 3.46·44-s + (−0.499 + 0.866i)49-s + (−0.866 + 1.5i)50-s + ⋯ |
Λ(s)=(=(567s/2ΓC(s)L(s)(0.642+0.766i)Λ(1−s)
Λ(s)=(=(567s/2ΓC(s)L(s)(0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
567
= 34⋅7
|
Sign: |
0.642+0.766i
|
Analytic conductor: |
0.282969 |
Root analytic conductor: |
0.531949 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ567(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 567, ( :0), 0.642+0.766i)
|
Particular Values
L(21) |
≈ |
0.5977147800 |
L(21) |
≈ |
0.5977147800 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.5−0.866i)T |
good | 2 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.866−1.5i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1−T2 |
| 19 | 1−T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1+(−0.5+0.866i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T+T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+1.73T+T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 71 | 1−1.73T+T2 |
| 73 | 1−T2 |
| 79 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89214514367268513131693933435, −9.811412262285066525937874266798, −9.438557081258007918606429047084, −8.501579990467090465047751705009, −7.70792771142513918507748388220, −6.40570697609618678615671053531, −4.87070708722958744869486818323, −3.89043779693755897932940555218, −2.48775217801204080396921726262, −1.65885049347120618410655102747,
1.11999114332158697137500474025, 3.59818317954485894339883335564, 4.88457328426438198487730737810, 5.96802682080223111941735999602, 6.63770565603998512326944184495, 7.64659259947741919184880825894, 8.234661819459637973208029249727, 9.103201546277372344072320035939, 9.849801843384793769381485832274, 10.94347761971671174317014119425