L(s) = 1 | + (−0.866 − 1.5i)2-s + (−1 + 1.73i)4-s + (0.5 + 0.866i)7-s + 1.73·8-s + (0.866 + 1.5i)11-s + (0.866 − 1.5i)14-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)22-s + (−0.5 − 0.866i)25-s − 2·28-s + 37-s + (−0.5 − 0.866i)43-s − 3.46·44-s + (−0.499 + 0.866i)49-s + (−0.866 + 1.5i)50-s + ⋯ |
L(s) = 1 | + (−0.866 − 1.5i)2-s + (−1 + 1.73i)4-s + (0.5 + 0.866i)7-s + 1.73·8-s + (0.866 + 1.5i)11-s + (0.866 − 1.5i)14-s + (−0.5 − 0.866i)16-s + (1.5 − 2.59i)22-s + (−0.5 − 0.866i)25-s − 2·28-s + 37-s + (−0.5 − 0.866i)43-s − 3.46·44-s + (−0.499 + 0.866i)49-s + (−0.866 + 1.5i)50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 567 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5977147800\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5977147800\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + 1.73T + T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 1.73T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.89214514367268513131693933435, −9.811412262285066525937874266798, −9.438557081258007918606429047084, −8.501579990467090465047751705009, −7.70792771142513918507748388220, −6.40570697609618678615671053531, −4.87070708722958744869486818323, −3.89043779693755897932940555218, −2.48775217801204080396921726262, −1.65885049347120618410655102747,
1.11999114332158697137500474025, 3.59818317954485894339883335564, 4.88457328426438198487730737810, 5.96802682080223111941735999602, 6.63770565603998512326944184495, 7.64659259947741919184880825894, 8.234661819459637973208029249727, 9.103201546277372344072320035939, 9.849801843384793769381485832274, 10.94347761971671174317014119425