L(s) = 1 | − 3·3-s − 5-s + 6·9-s − 11-s + 2·13-s + 3·15-s − 3·17-s − 5·19-s + 3·23-s − 4·25-s − 9·27-s + 6·29-s − 31-s + 3·33-s + 5·37-s − 6·39-s + 10·41-s − 4·43-s − 6·45-s + 47-s + 9·51-s + 9·53-s + 55-s + 15·57-s − 3·59-s + 3·61-s − 2·65-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.447·5-s + 2·9-s − 0.301·11-s + 0.554·13-s + 0.774·15-s − 0.727·17-s − 1.14·19-s + 0.625·23-s − 4/5·25-s − 1.73·27-s + 1.11·29-s − 0.179·31-s + 0.522·33-s + 0.821·37-s − 0.960·39-s + 1.56·41-s − 0.609·43-s − 0.894·45-s + 0.145·47-s + 1.26·51-s + 1.23·53-s + 0.134·55-s + 1.98·57-s − 0.390·59-s + 0.384·61-s − 0.248·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 5 | \( 1 + T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 + 5 T + p T^{2} \) |
| 23 | \( 1 - 3 T + p T^{2} \) |
| 29 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + T + p T^{2} \) |
| 37 | \( 1 - 5 T + p T^{2} \) |
| 41 | \( 1 - 10 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 - T + p T^{2} \) |
| 53 | \( 1 - 9 T + p T^{2} \) |
| 59 | \( 1 + 3 T + p T^{2} \) |
| 61 | \( 1 - 3 T + p T^{2} \) |
| 67 | \( 1 - 11 T + p T^{2} \) |
| 71 | \( 1 + 16 T + p T^{2} \) |
| 73 | \( 1 + 7 T + p T^{2} \) |
| 79 | \( 1 - 11 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 - 9 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.230315165473213095839519633705, −7.38315583202405666291782015581, −6.56899809479189996756800142405, −6.11960412337872958718479712327, −5.29913325153166278991319869627, −4.49040947012230363312554161259, −3.93566966697450588624507732655, −2.44876208464128486413690607456, −1.08713788900686923431368242918, 0,
1.08713788900686923431368242918, 2.44876208464128486413690607456, 3.93566966697450588624507732655, 4.49040947012230363312554161259, 5.29913325153166278991319869627, 6.11960412337872958718479712327, 6.56899809479189996756800142405, 7.38315583202405666291782015581, 8.230315165473213095839519633705