L(s) = 1 | − 3·3-s − 5-s + 6·9-s − 11-s + 2·13-s + 3·15-s − 3·17-s − 5·19-s + 3·23-s − 4·25-s − 9·27-s + 6·29-s − 31-s + 3·33-s + 5·37-s − 6·39-s + 10·41-s − 4·43-s − 6·45-s + 47-s + 9·51-s + 9·53-s + 55-s + 15·57-s − 3·59-s + 3·61-s − 2·65-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 0.447·5-s + 2·9-s − 0.301·11-s + 0.554·13-s + 0.774·15-s − 0.727·17-s − 1.14·19-s + 0.625·23-s − 4/5·25-s − 1.73·27-s + 1.11·29-s − 0.179·31-s + 0.522·33-s + 0.821·37-s − 0.960·39-s + 1.56·41-s − 0.609·43-s − 0.894·45-s + 0.145·47-s + 1.26·51-s + 1.23·53-s + 0.134·55-s + 1.98·57-s − 0.390·59-s + 0.384·61-s − 0.248·65-s + ⋯ |
Λ(s)=(=(3136s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3136s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+pT+pT2 |
| 5 | 1+T+pT2 |
| 11 | 1+T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+5T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+T+pT2 |
| 37 | 1−5T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−T+pT2 |
| 53 | 1−9T+pT2 |
| 59 | 1+3T+pT2 |
| 61 | 1−3T+pT2 |
| 67 | 1−11T+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1+7T+pT2 |
| 79 | 1−11T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−9T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.230315165473213095839519633705, −7.38315583202405666291782015581, −6.56899809479189996756800142405, −6.11960412337872958718479712327, −5.29913325153166278991319869627, −4.49040947012230363312554161259, −3.93566966697450588624507732655, −2.44876208464128486413690607456, −1.08713788900686923431368242918, 0,
1.08713788900686923431368242918, 2.44876208464128486413690607456, 3.93566966697450588624507732655, 4.49040947012230363312554161259, 5.29913325153166278991319869627, 6.11960412337872958718479712327, 6.56899809479189996756800142405, 7.38315583202405666291782015581, 8.230315165473213095839519633705