L(s) = 1 | − 2·3-s + 9-s − 4·13-s − 6·17-s + 2·19-s − 5·25-s + 4·27-s + 6·29-s + 4·31-s − 2·37-s + 8·39-s − 6·41-s − 8·43-s + 12·47-s + 12·51-s − 6·53-s − 4·57-s − 6·59-s + 8·61-s + 4·67-s − 2·73-s + 10·75-s + 8·79-s − 11·81-s − 6·83-s − 12·87-s + 6·89-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 1/3·9-s − 1.10·13-s − 1.45·17-s + 0.458·19-s − 25-s + 0.769·27-s + 1.11·29-s + 0.718·31-s − 0.328·37-s + 1.28·39-s − 0.937·41-s − 1.21·43-s + 1.75·47-s + 1.68·51-s − 0.824·53-s − 0.529·57-s − 0.781·59-s + 1.02·61-s + 0.488·67-s − 0.234·73-s + 1.15·75-s + 0.900·79-s − 1.22·81-s − 0.658·83-s − 1.28·87-s + 0.635·89-s + ⋯ |
Λ(s)=(=(3136s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3136s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7085048697 |
L(21) |
≈ |
0.7085048697 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+2T+pT2 |
| 5 | 1+pT2 |
| 11 | 1+pT2 |
| 13 | 1+4T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−2T+pT2 |
| 23 | 1+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1−8T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+2T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.678731346329368257431074943309, −7.895164678888831912291936607752, −6.90531576344093792893651903833, −6.50364338668347614528670710226, −5.58920639964454334454555282661, −4.91171613213171916096600238802, −4.29390759056738033972615396659, −2.99977174751051762376143721143, −1.99280794987984862469967531446, −0.51891811197874657341665639572,
0.51891811197874657341665639572, 1.99280794987984862469967531446, 2.99977174751051762376143721143, 4.29390759056738033972615396659, 4.91171613213171916096600238802, 5.58920639964454334454555282661, 6.50364338668347614528670710226, 6.90531576344093792893651903833, 7.895164678888831912291936607752, 8.678731346329368257431074943309