Properties

Label 2-56e2-1.1-c1-0-4
Degree $2$
Conductor $3136$
Sign $1$
Analytic cond. $25.0410$
Root an. cond. $5.00410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 9-s − 4·13-s − 6·17-s + 2·19-s − 5·25-s + 4·27-s + 6·29-s + 4·31-s − 2·37-s + 8·39-s − 6·41-s − 8·43-s + 12·47-s + 12·51-s − 6·53-s − 4·57-s − 6·59-s + 8·61-s + 4·67-s − 2·73-s + 10·75-s + 8·79-s − 11·81-s − 6·83-s − 12·87-s + 6·89-s + ⋯
L(s)  = 1  − 1.15·3-s + 1/3·9-s − 1.10·13-s − 1.45·17-s + 0.458·19-s − 25-s + 0.769·27-s + 1.11·29-s + 0.718·31-s − 0.328·37-s + 1.28·39-s − 0.937·41-s − 1.21·43-s + 1.75·47-s + 1.68·51-s − 0.824·53-s − 0.529·57-s − 0.781·59-s + 1.02·61-s + 0.488·67-s − 0.234·73-s + 1.15·75-s + 0.900·79-s − 1.22·81-s − 0.658·83-s − 1.28·87-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3136 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3136\)    =    \(2^{6} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(25.0410\)
Root analytic conductor: \(5.00410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3136,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7085048697\)
\(L(\frac12)\) \(\approx\) \(0.7085048697\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \)
5 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.678731346329368257431074943309, −7.895164678888831912291936607752, −6.90531576344093792893651903833, −6.50364338668347614528670710226, −5.58920639964454334454555282661, −4.91171613213171916096600238802, −4.29390759056738033972615396659, −2.99977174751051762376143721143, −1.99280794987984862469967531446, −0.51891811197874657341665639572, 0.51891811197874657341665639572, 1.99280794987984862469967531446, 2.99977174751051762376143721143, 4.29390759056738033972615396659, 4.91171613213171916096600238802, 5.58920639964454334454555282661, 6.50364338668347614528670710226, 6.90531576344093792893651903833, 7.895164678888831912291936607752, 8.678731346329368257431074943309

Graph of the $Z$-function along the critical line