L(s) = 1 | + (1.25 + 2.17i)2-s + (−0.5 − 0.866i)3-s + (−2.16 + 3.74i)4-s + (−1.66 − 2.87i)5-s + (1.25 − 2.17i)6-s + 2.32·7-s − 5.83·8-s + (−0.499 + 0.866i)9-s + (4.17 − 7.23i)10-s − 1.70·11-s + 4.32·12-s + (−2.01 + 3.48i)13-s + (2.91 + 5.05i)14-s + (−1.66 + 2.87i)15-s + (−3.01 − 5.22i)16-s + ⋯ |
L(s) = 1 | + (0.888 + 1.53i)2-s + (−0.288 − 0.499i)3-s + (−1.08 + 1.87i)4-s + (−0.742 − 1.28i)5-s + (0.513 − 0.888i)6-s + 0.877·7-s − 2.06·8-s + (−0.166 + 0.288i)9-s + (1.32 − 2.28i)10-s − 0.514·11-s + 1.24·12-s + (−0.558 + 0.967i)13-s + (0.779 + 1.35i)14-s + (−0.428 + 0.742i)15-s + (−0.753 − 1.30i)16-s + ⋯ |
Λ(s)=(=(57s/2ΓC(s)L(s)(0.254−0.967i)Λ(2−s)
Λ(s)=(=(57s/2ΓC(s+1/2)L(s)(0.254−0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
57
= 3⋅19
|
Sign: |
0.254−0.967i
|
Analytic conductor: |
0.455147 |
Root analytic conductor: |
0.674646 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ57(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 57, ( :1/2), 0.254−0.967i)
|
Particular Values
L(1) |
≈ |
0.846487+0.652629i |
L(21) |
≈ |
0.846487+0.652629i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.5+0.866i)T |
| 19 | 1+(−0.193+4.35i)T |
good | 2 | 1+(−1.25−2.17i)T+(−1+1.73i)T2 |
| 5 | 1+(1.66+2.87i)T+(−2.5+4.33i)T2 |
| 7 | 1−2.32T+7T2 |
| 11 | 1+1.70T+11T2 |
| 13 | 1+(2.01−3.48i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 23 | 1+(−1.17+2.03i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3.32−5.75i)T+(−14.5−25.1i)T2 |
| 31 | 1−6.70T+31T2 |
| 37 | 1+T+37T2 |
| 41 | 1+(−3.32−5.75i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.353+0.612i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−3+5.19i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.98+8.62i)T+(−26.5−45.8i)T2 |
| 59 | 1+(0.853+1.47i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.69−2.93i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−4.18+7.25i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−4.70−8.15i)T+(−35.5+61.4i)T2 |
| 73 | 1+(5.82+10.0i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−1.67−2.90i)T+(−39.5+68.4i)T2 |
| 83 | 1+10.0T+83T2 |
| 89 | 1+(−1.33+2.32i)T+(−44.5−77.0i)T2 |
| 97 | 1+(8.86+15.3i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.51868418320865219810418344004, −14.46507060263240882713199873838, −13.35633797664994695896872278126, −12.49214142205402292838886570007, −11.51545091123422372035104233252, −8.818723326978585894456721069922, −7.957880378968913562745530172828, −6.90563790575456069500084841087, −5.17781613996977954792779011068, −4.51778149694231630428310060811,
2.81871623103593173270887540885, 4.14833953162062799113937923518, 5.57222427665717340383168612318, 7.77450293761169913236384536454, 9.981722622473345269012849564950, 10.74316328484034785040043227968, 11.47038008537841220191263069048, 12.39486437786918420430776271376, 13.87997974762801974695047236037, 14.81197389192486419983691683028