L(s) = 1 | + (0.448 − 2.54i)2-s + (0.504 + 1.65i)3-s + (−4.37 − 1.59i)4-s + (−0.533 − 1.46i)5-s + (4.43 − 0.538i)6-s + (1.49 + 2.59i)7-s + (−3.42 + 5.93i)8-s + (−2.49 + 1.67i)9-s + (−3.96 + 0.699i)10-s + (1.05 + 0.611i)11-s + (0.432 − 8.05i)12-s + (0.203 + 0.242i)13-s + (7.25 − 2.64i)14-s + (2.16 − 1.62i)15-s + (6.41 + 5.38i)16-s + (−5.00 − 0.882i)17-s + ⋯ |
L(s) = 1 | + (0.316 − 1.79i)2-s + (0.291 + 0.956i)3-s + (−2.18 − 0.796i)4-s + (−0.238 − 0.655i)5-s + (1.81 − 0.219i)6-s + (0.565 + 0.979i)7-s + (−1.21 + 2.09i)8-s + (−0.830 + 0.556i)9-s + (−1.25 + 0.221i)10-s + (0.319 + 0.184i)11-s + (0.124 − 2.32i)12-s + (0.0564 + 0.0672i)13-s + (1.93 − 0.706i)14-s + (0.558 − 0.419i)15-s + (1.60 + 1.34i)16-s + (−1.21 − 0.214i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0291 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0291 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.680820 - 0.661248i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.680820 - 0.661248i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.504 - 1.65i)T \) |
| 19 | \( 1 + (0.461 + 4.33i)T \) |
good | 2 | \( 1 + (-0.448 + 2.54i)T + (-1.87 - 0.684i)T^{2} \) |
| 5 | \( 1 + (0.533 + 1.46i)T + (-3.83 + 3.21i)T^{2} \) |
| 7 | \( 1 + (-1.49 - 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.05 - 0.611i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.203 - 0.242i)T + (-2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (5.00 + 0.882i)T + (15.9 + 5.81i)T^{2} \) |
| 23 | \( 1 + (-0.211 + 0.581i)T + (-17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (-0.204 - 1.16i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (4.50 - 2.59i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.64iT - 37T^{2} \) |
| 41 | \( 1 + (-0.118 - 0.0991i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (-8.99 + 3.27i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (-8.03 + 1.41i)T + (44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 + (-2.88 - 1.04i)T + (40.6 + 34.0i)T^{2} \) |
| 59 | \( 1 + (0.468 - 2.65i)T + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (6.47 + 2.35i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-8.96 + 1.58i)T + (62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (12.9 - 4.71i)T + (54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (0.335 + 0.281i)T + (12.6 + 71.8i)T^{2} \) |
| 79 | \( 1 + (0.940 - 1.12i)T + (-13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (-9.46 + 5.46i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (6.02 - 5.05i)T + (15.4 - 87.6i)T^{2} \) |
| 97 | \( 1 + (18.2 + 3.22i)T + (91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.74730821244428315079917712677, −13.61043964363685890483144427215, −12.41141440792709904896417896154, −11.48121859348336131983254137109, −10.63069376270207414385349422280, −9.103809746490045656224312906612, −8.795429182988543433929697451308, −5.15939751814214065412083682445, −4.25533746471329045740840367005, −2.48419763154511860551357595394,
4.03065015756233248617212531846, 5.98013733297923467174623208320, 7.08965394851649268025015528767, 7.75258961857716889152217272859, 8.935396267977817078411835917273, 11.03259986898804825973168957545, 12.74528398877480574271040846241, 13.79365965909385198508441716796, 14.40395766608295190422883528512, 15.24598787769030660608086717296