L(s) = 1 | + (0.448 − 2.54i)2-s + (0.504 + 1.65i)3-s + (−4.37 − 1.59i)4-s + (−0.533 − 1.46i)5-s + (4.43 − 0.538i)6-s + (1.49 + 2.59i)7-s + (−3.42 + 5.93i)8-s + (−2.49 + 1.67i)9-s + (−3.96 + 0.699i)10-s + (1.05 + 0.611i)11-s + (0.432 − 8.05i)12-s + (0.203 + 0.242i)13-s + (7.25 − 2.64i)14-s + (2.16 − 1.62i)15-s + (6.41 + 5.38i)16-s + (−5.00 − 0.882i)17-s + ⋯ |
L(s) = 1 | + (0.316 − 1.79i)2-s + (0.291 + 0.956i)3-s + (−2.18 − 0.796i)4-s + (−0.238 − 0.655i)5-s + (1.81 − 0.219i)6-s + (0.565 + 0.979i)7-s + (−1.21 + 2.09i)8-s + (−0.830 + 0.556i)9-s + (−1.25 + 0.221i)10-s + (0.319 + 0.184i)11-s + (0.124 − 2.32i)12-s + (0.0564 + 0.0672i)13-s + (1.93 − 0.706i)14-s + (0.558 − 0.419i)15-s + (1.60 + 1.34i)16-s + (−1.21 − 0.214i)17-s + ⋯ |
Λ(s)=(=(57s/2ΓC(s)L(s)(0.0291+0.999i)Λ(2−s)
Λ(s)=(=(57s/2ΓC(s+1/2)L(s)(0.0291+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
57
= 3⋅19
|
Sign: |
0.0291+0.999i
|
Analytic conductor: |
0.455147 |
Root analytic conductor: |
0.674646 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ57(2,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 57, ( :1/2), 0.0291+0.999i)
|
Particular Values
L(1) |
≈ |
0.680820−0.661248i |
L(21) |
≈ |
0.680820−0.661248i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.504−1.65i)T |
| 19 | 1+(0.461+4.33i)T |
good | 2 | 1+(−0.448+2.54i)T+(−1.87−0.684i)T2 |
| 5 | 1+(0.533+1.46i)T+(−3.83+3.21i)T2 |
| 7 | 1+(−1.49−2.59i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−1.05−0.611i)T+(5.5+9.52i)T2 |
| 13 | 1+(−0.203−0.242i)T+(−2.25+12.8i)T2 |
| 17 | 1+(5.00+0.882i)T+(15.9+5.81i)T2 |
| 23 | 1+(−0.211+0.581i)T+(−17.6−14.7i)T2 |
| 29 | 1+(−0.204−1.16i)T+(−27.2+9.91i)T2 |
| 31 | 1+(4.50−2.59i)T+(15.5−26.8i)T2 |
| 37 | 1−3.64iT−37T2 |
| 41 | 1+(−0.118−0.0991i)T+(7.11+40.3i)T2 |
| 43 | 1+(−8.99+3.27i)T+(32.9−27.6i)T2 |
| 47 | 1+(−8.03+1.41i)T+(44.1−16.0i)T2 |
| 53 | 1+(−2.88−1.04i)T+(40.6+34.0i)T2 |
| 59 | 1+(0.468−2.65i)T+(−55.4−20.1i)T2 |
| 61 | 1+(6.47+2.35i)T+(46.7+39.2i)T2 |
| 67 | 1+(−8.96+1.58i)T+(62.9−22.9i)T2 |
| 71 | 1+(12.9−4.71i)T+(54.3−45.6i)T2 |
| 73 | 1+(0.335+0.281i)T+(12.6+71.8i)T2 |
| 79 | 1+(0.940−1.12i)T+(−13.7−77.7i)T2 |
| 83 | 1+(−9.46+5.46i)T+(41.5−71.8i)T2 |
| 89 | 1+(6.02−5.05i)T+(15.4−87.6i)T2 |
| 97 | 1+(18.2+3.22i)T+(91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.74730821244428315079917712677, −13.61043964363685890483144427215, −12.41141440792709904896417896154, −11.48121859348336131983254137109, −10.63069376270207414385349422280, −9.103809746490045656224312906612, −8.795429182988543433929697451308, −5.15939751814214065412083682445, −4.25533746471329045740840367005, −2.48419763154511860551357595394,
4.03065015756233248617212531846, 5.98013733297923467174623208320, 7.08965394851649268025015528767, 7.75258961857716889152217272859, 8.935396267977817078411835917273, 11.03259986898804825973168957545, 12.74528398877480574271040846241, 13.79365965909385198508441716796, 14.40395766608295190422883528512, 15.24598787769030660608086717296