L(s) = 1 | − 3-s − 2.16·5-s − 7-s + 9-s − 3·11-s − 0.162·13-s + 2.16·15-s − 17-s + 1.83·19-s + 21-s − 7.32·23-s − 0.324·25-s − 27-s + 10.3·29-s − 1.16·31-s + 3·33-s + 2.16·35-s − 9.16·37-s + 0.162·39-s − 3.83·41-s − 9.32·43-s − 2.16·45-s − 5.16·47-s + 49-s + 51-s + 9.48·53-s + 6.48·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.966·5-s − 0.377·7-s + 0.333·9-s − 0.904·11-s − 0.0450·13-s + 0.558·15-s − 0.242·17-s + 0.421·19-s + 0.218·21-s − 1.52·23-s − 0.0649·25-s − 0.192·27-s + 1.91·29-s − 0.208·31-s + 0.522·33-s + 0.365·35-s − 1.50·37-s + 0.0259·39-s − 0.599·41-s − 1.42·43-s − 0.322·45-s − 0.752·47-s + 0.142·49-s + 0.140·51-s + 1.30·53-s + 0.874·55-s + ⋯ |
Λ(s)=(=(5712s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5712s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5092902909 |
L(21) |
≈ |
0.5092902909 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 7 | 1+T |
| 17 | 1+T |
good | 5 | 1+2.16T+5T2 |
| 11 | 1+3T+11T2 |
| 13 | 1+0.162T+13T2 |
| 19 | 1−1.83T+19T2 |
| 23 | 1+7.32T+23T2 |
| 29 | 1−10.3T+29T2 |
| 31 | 1+1.16T+31T2 |
| 37 | 1+9.16T+37T2 |
| 41 | 1+3.83T+41T2 |
| 43 | 1+9.32T+43T2 |
| 47 | 1+5.16T+47T2 |
| 53 | 1−9.48T+53T2 |
| 59 | 1+6.83T+59T2 |
| 61 | 1+3.16T+61T2 |
| 67 | 1−10T+67T2 |
| 71 | 1+14.6T+71T2 |
| 73 | 1−12.3T+73T2 |
| 79 | 1+7.16T+79T2 |
| 83 | 1+6T+83T2 |
| 89 | 1+10.3T+89T2 |
| 97 | 1−16.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.220094241865914411058141860379, −7.34744559564930105584374954016, −6.77212343936618090169346311650, −5.98871350518501796244378121884, −5.18938886017655228095240878419, −4.52788835494880625515537032491, −3.70110526043721509999793455388, −2.95321312026719671999130632615, −1.79962660521271483312640355686, −0.37762336384834728616715225670,
0.37762336384834728616715225670, 1.79962660521271483312640355686, 2.95321312026719671999130632615, 3.70110526043721509999793455388, 4.52788835494880625515537032491, 5.18938886017655228095240878419, 5.98871350518501796244378121884, 6.77212343936618090169346311650, 7.34744559564930105584374954016, 8.220094241865914411058141860379