Properties

Label 2-5712-1.1-c1-0-1
Degree $2$
Conductor $5712$
Sign $1$
Analytic cond. $45.6105$
Root an. cond. $6.75355$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2.16·5-s − 7-s + 9-s − 3·11-s − 0.162·13-s + 2.16·15-s − 17-s + 1.83·19-s + 21-s − 7.32·23-s − 0.324·25-s − 27-s + 10.3·29-s − 1.16·31-s + 3·33-s + 2.16·35-s − 9.16·37-s + 0.162·39-s − 3.83·41-s − 9.32·43-s − 2.16·45-s − 5.16·47-s + 49-s + 51-s + 9.48·53-s + 6.48·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.966·5-s − 0.377·7-s + 0.333·9-s − 0.904·11-s − 0.0450·13-s + 0.558·15-s − 0.242·17-s + 0.421·19-s + 0.218·21-s − 1.52·23-s − 0.0649·25-s − 0.192·27-s + 1.91·29-s − 0.208·31-s + 0.522·33-s + 0.365·35-s − 1.50·37-s + 0.0259·39-s − 0.599·41-s − 1.42·43-s − 0.322·45-s − 0.752·47-s + 0.142·49-s + 0.140·51-s + 1.30·53-s + 0.874·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5712\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(45.6105\)
Root analytic conductor: \(6.75355\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5092902909\)
\(L(\frac12)\) \(\approx\) \(0.5092902909\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + 2.16T + 5T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 + 0.162T + 13T^{2} \)
19 \( 1 - 1.83T + 19T^{2} \)
23 \( 1 + 7.32T + 23T^{2} \)
29 \( 1 - 10.3T + 29T^{2} \)
31 \( 1 + 1.16T + 31T^{2} \)
37 \( 1 + 9.16T + 37T^{2} \)
41 \( 1 + 3.83T + 41T^{2} \)
43 \( 1 + 9.32T + 43T^{2} \)
47 \( 1 + 5.16T + 47T^{2} \)
53 \( 1 - 9.48T + 53T^{2} \)
59 \( 1 + 6.83T + 59T^{2} \)
61 \( 1 + 3.16T + 61T^{2} \)
67 \( 1 - 10T + 67T^{2} \)
71 \( 1 + 14.6T + 71T^{2} \)
73 \( 1 - 12.3T + 73T^{2} \)
79 \( 1 + 7.16T + 79T^{2} \)
83 \( 1 + 6T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 - 16.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.220094241865914411058141860379, −7.34744559564930105584374954016, −6.77212343936618090169346311650, −5.98871350518501796244378121884, −5.18938886017655228095240878419, −4.52788835494880625515537032491, −3.70110526043721509999793455388, −2.95321312026719671999130632615, −1.79962660521271483312640355686, −0.37762336384834728616715225670, 0.37762336384834728616715225670, 1.79962660521271483312640355686, 2.95321312026719671999130632615, 3.70110526043721509999793455388, 4.52788835494880625515537032491, 5.18938886017655228095240878419, 5.98871350518501796244378121884, 6.77212343936618090169346311650, 7.34744559564930105584374954016, 8.220094241865914411058141860379

Graph of the $Z$-function along the critical line