L(s) = 1 | − 3-s − 0.561·5-s + 7-s + 9-s − 2.56·11-s + 4.56·13-s + 0.561·15-s + 17-s + 0.561·19-s − 21-s − 2.56·23-s − 4.68·25-s − 27-s − 1.12·29-s + 5.12·31-s + 2.56·33-s − 0.561·35-s + 7.12·37-s − 4.56·39-s + 4.56·41-s − 1.43·43-s − 0.561·45-s − 5.12·47-s + 49-s − 51-s + 6·53-s + 1.43·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.251·5-s + 0.377·7-s + 0.333·9-s − 0.772·11-s + 1.26·13-s + 0.144·15-s + 0.242·17-s + 0.128·19-s − 0.218·21-s − 0.534·23-s − 0.936·25-s − 0.192·27-s − 0.208·29-s + 0.920·31-s + 0.445·33-s − 0.0949·35-s + 1.17·37-s − 0.730·39-s + 0.712·41-s − 0.219·43-s − 0.0837·45-s − 0.747·47-s + 0.142·49-s − 0.140·51-s + 0.824·53-s + 0.193·55-s + ⋯ |
Λ(s)=(=(5712s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5712s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.485937780 |
L(21) |
≈ |
1.485937780 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 7 | 1−T |
| 17 | 1−T |
good | 5 | 1+0.561T+5T2 |
| 11 | 1+2.56T+11T2 |
| 13 | 1−4.56T+13T2 |
| 19 | 1−0.561T+19T2 |
| 23 | 1+2.56T+23T2 |
| 29 | 1+1.12T+29T2 |
| 31 | 1−5.12T+31T2 |
| 37 | 1−7.12T+37T2 |
| 41 | 1−4.56T+41T2 |
| 43 | 1+1.43T+43T2 |
| 47 | 1+5.12T+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+11.3T+59T2 |
| 61 | 1−14.2T+61T2 |
| 67 | 1−4T+67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1+5.12T+73T2 |
| 79 | 1+7.36T+79T2 |
| 83 | 1−5.12T+83T2 |
| 89 | 1−13.3T+89T2 |
| 97 | 1+14.2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.017119626327761558067972188882, −7.57261570996245481318485659009, −6.56916198784719116514440158298, −5.93211149174073308880979943336, −5.36413881549599092246633704766, −4.44045270636198190629524015318, −3.83252769944893195986423059417, −2.81621326117819935927835042674, −1.73392163390563410545671193219, −0.68245589433683787157343506089,
0.68245589433683787157343506089, 1.73392163390563410545671193219, 2.81621326117819935927835042674, 3.83252769944893195986423059417, 4.44045270636198190629524015318, 5.36413881549599092246633704766, 5.93211149174073308880979943336, 6.56916198784719116514440158298, 7.57261570996245481318485659009, 8.017119626327761558067972188882