Properties

Label 2-5712-1.1-c1-0-2
Degree $2$
Conductor $5712$
Sign $1$
Analytic cond. $45.6105$
Root an. cond. $6.75355$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·5-s − 7-s + 9-s − 3·11-s + 5·13-s + 3·15-s − 17-s − 2·19-s + 21-s − 6·23-s + 4·25-s − 27-s − 6·29-s + 4·31-s + 3·33-s + 3·35-s + 11·37-s − 5·39-s − 12·41-s + 43-s − 3·45-s − 12·47-s + 49-s + 51-s − 9·53-s + 9·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s − 0.904·11-s + 1.38·13-s + 0.774·15-s − 0.242·17-s − 0.458·19-s + 0.218·21-s − 1.25·23-s + 4/5·25-s − 0.192·27-s − 1.11·29-s + 0.718·31-s + 0.522·33-s + 0.507·35-s + 1.80·37-s − 0.800·39-s − 1.87·41-s + 0.152·43-s − 0.447·45-s − 1.75·47-s + 1/7·49-s + 0.140·51-s − 1.23·53-s + 1.21·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5712\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(45.6105\)
Root analytic conductor: \(6.75355\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5209769691\)
\(L(\frac12)\) \(\approx\) \(0.5209769691\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 5 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 11 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 5 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + 19 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.019507455750696322517359396577, −7.60071241079856865939505009051, −6.52974126119963944803026329454, −6.15891201432989065467850720102, −5.20983774777158442191812465551, −4.35865858694941866044297529040, −3.78371489917505067880314892179, −3.02402476613205357995053379893, −1.73527382204318293609960924592, −0.38832682507999745116601502102, 0.38832682507999745116601502102, 1.73527382204318293609960924592, 3.02402476613205357995053379893, 3.78371489917505067880314892179, 4.35865858694941866044297529040, 5.20983774777158442191812465551, 6.15891201432989065467850720102, 6.52974126119963944803026329454, 7.60071241079856865939505009051, 8.019507455750696322517359396577

Graph of the $Z$-function along the critical line