Properties

Label 2-5712-1.1-c1-0-3
Degree $2$
Conductor $5712$
Sign $1$
Analytic cond. $45.6105$
Root an. cond. $6.75355$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2.29·5-s − 7-s + 9-s − 4.29·11-s − 3.87·13-s − 2.29·15-s − 17-s − 3.08·19-s − 21-s + 3.08·23-s + 0.276·25-s + 27-s + 6·29-s + 6.16·31-s − 4.29·33-s + 2.29·35-s + 0.786·37-s − 3.87·39-s − 1.08·41-s − 5.87·43-s − 2.29·45-s − 6.16·47-s + 49-s − 51-s − 2.95·53-s + 9.87·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.02·5-s − 0.377·7-s + 0.333·9-s − 1.29·11-s − 1.07·13-s − 0.593·15-s − 0.242·17-s − 0.707·19-s − 0.218·21-s + 0.643·23-s + 0.0553·25-s + 0.192·27-s + 1.11·29-s + 1.10·31-s − 0.748·33-s + 0.388·35-s + 0.129·37-s − 0.619·39-s − 0.169·41-s − 0.895·43-s − 0.342·45-s − 0.899·47-s + 0.142·49-s − 0.140·51-s − 0.405·53-s + 1.33·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5712\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(45.6105\)
Root analytic conductor: \(6.75355\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.072771913\)
\(L(\frac12)\) \(\approx\) \(1.072771913\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + 2.29T + 5T^{2} \)
11 \( 1 + 4.29T + 11T^{2} \)
13 \( 1 + 3.87T + 13T^{2} \)
19 \( 1 + 3.08T + 19T^{2} \)
23 \( 1 - 3.08T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 6.16T + 31T^{2} \)
37 \( 1 - 0.786T + 37T^{2} \)
41 \( 1 + 1.08T + 41T^{2} \)
43 \( 1 + 5.87T + 43T^{2} \)
47 \( 1 + 6.16T + 47T^{2} \)
53 \( 1 + 2.95T + 53T^{2} \)
59 \( 1 - 7.02T + 59T^{2} \)
61 \( 1 + 5.02T + 61T^{2} \)
67 \( 1 + 4.95T + 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 + 1.38T + 73T^{2} \)
79 \( 1 - 2.78T + 79T^{2} \)
83 \( 1 - 4.36T + 83T^{2} \)
89 \( 1 - 15.5T + 89T^{2} \)
97 \( 1 - 17.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.089741203578080816260973777388, −7.55563241897776195663107974392, −6.89260712453926549664717789150, −6.10822121568372702479257103101, −4.79805057991774791586804124146, −4.69395634370256412208224015291, −3.49915208998746484028128010957, −2.88347758299567771910933028806, −2.12218887990436832979342738792, −0.50362081728573779615504243150, 0.50362081728573779615504243150, 2.12218887990436832979342738792, 2.88347758299567771910933028806, 3.49915208998746484028128010957, 4.69395634370256412208224015291, 4.79805057991774791586804124146, 6.10822121568372702479257103101, 6.89260712453926549664717789150, 7.55563241897776195663107974392, 8.089741203578080816260973777388

Graph of the $Z$-function along the critical line