L(s) = 1 | + 3-s − 2.29·5-s − 7-s + 9-s − 4.29·11-s − 3.87·13-s − 2.29·15-s − 17-s − 3.08·19-s − 21-s + 3.08·23-s + 0.276·25-s + 27-s + 6·29-s + 6.16·31-s − 4.29·33-s + 2.29·35-s + 0.786·37-s − 3.87·39-s − 1.08·41-s − 5.87·43-s − 2.29·45-s − 6.16·47-s + 49-s − 51-s − 2.95·53-s + 9.87·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.02·5-s − 0.377·7-s + 0.333·9-s − 1.29·11-s − 1.07·13-s − 0.593·15-s − 0.242·17-s − 0.707·19-s − 0.218·21-s + 0.643·23-s + 0.0553·25-s + 0.192·27-s + 1.11·29-s + 1.10·31-s − 0.748·33-s + 0.388·35-s + 0.129·37-s − 0.619·39-s − 0.169·41-s − 0.895·43-s − 0.342·45-s − 0.899·47-s + 0.142·49-s − 0.140·51-s − 0.405·53-s + 1.33·55-s + ⋯ |
Λ(s)=(=(5712s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5712s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.072771913 |
L(21) |
≈ |
1.072771913 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1+T |
| 17 | 1+T |
good | 5 | 1+2.29T+5T2 |
| 11 | 1+4.29T+11T2 |
| 13 | 1+3.87T+13T2 |
| 19 | 1+3.08T+19T2 |
| 23 | 1−3.08T+23T2 |
| 29 | 1−6T+29T2 |
| 31 | 1−6.16T+31T2 |
| 37 | 1−0.786T+37T2 |
| 41 | 1+1.08T+41T2 |
| 43 | 1+5.87T+43T2 |
| 47 | 1+6.16T+47T2 |
| 53 | 1+2.95T+53T2 |
| 59 | 1−7.02T+59T2 |
| 61 | 1+5.02T+61T2 |
| 67 | 1+4.95T+67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1+1.38T+73T2 |
| 79 | 1−2.78T+79T2 |
| 83 | 1−4.36T+83T2 |
| 89 | 1−15.5T+89T2 |
| 97 | 1−17.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.089741203578080816260973777388, −7.55563241897776195663107974392, −6.89260712453926549664717789150, −6.10822121568372702479257103101, −4.79805057991774791586804124146, −4.69395634370256412208224015291, −3.49915208998746484028128010957, −2.88347758299567771910933028806, −2.12218887990436832979342738792, −0.50362081728573779615504243150,
0.50362081728573779615504243150, 2.12218887990436832979342738792, 2.88347758299567771910933028806, 3.49915208998746484028128010957, 4.69395634370256412208224015291, 4.79805057991774791586804124146, 6.10822121568372702479257103101, 6.89260712453926549664717789150, 7.55563241897776195663107974392, 8.089741203578080816260973777388