Properties

Label 2-5712-1.1-c1-0-33
Degree $2$
Conductor $5712$
Sign $1$
Analytic cond. $45.6105$
Root an. cond. $6.75355$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 0.414·5-s + 7-s + 9-s − 11-s − 1.58·13-s + 0.414·15-s − 17-s + 3.58·19-s + 21-s + 3.82·23-s − 4.82·25-s + 27-s + 6.82·29-s + 9.89·31-s − 33-s + 0.414·35-s − 8.24·37-s − 1.58·39-s − 4.07·41-s + 0.171·43-s + 0.414·45-s + 2.58·47-s + 49-s − 51-s − 2.24·53-s − 0.414·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.185·5-s + 0.377·7-s + 0.333·9-s − 0.301·11-s − 0.439·13-s + 0.106·15-s − 0.242·17-s + 0.822·19-s + 0.218·21-s + 0.798·23-s − 0.965·25-s + 0.192·27-s + 1.26·29-s + 1.77·31-s − 0.174·33-s + 0.0700·35-s − 1.35·37-s − 0.253·39-s − 0.635·41-s + 0.0261·43-s + 0.0617·45-s + 0.377·47-s + 0.142·49-s − 0.140·51-s − 0.308·53-s − 0.0558·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5712\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(45.6105\)
Root analytic conductor: \(6.75355\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.733561018\)
\(L(\frac12)\) \(\approx\) \(2.733561018\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 - 0.414T + 5T^{2} \)
11 \( 1 + T + 11T^{2} \)
13 \( 1 + 1.58T + 13T^{2} \)
19 \( 1 - 3.58T + 19T^{2} \)
23 \( 1 - 3.82T + 23T^{2} \)
29 \( 1 - 6.82T + 29T^{2} \)
31 \( 1 - 9.89T + 31T^{2} \)
37 \( 1 + 8.24T + 37T^{2} \)
41 \( 1 + 4.07T + 41T^{2} \)
43 \( 1 - 0.171T + 43T^{2} \)
47 \( 1 - 2.58T + 47T^{2} \)
53 \( 1 + 2.24T + 53T^{2} \)
59 \( 1 - 3.75T + 59T^{2} \)
61 \( 1 - 10.7T + 61T^{2} \)
67 \( 1 - 7.65T + 67T^{2} \)
71 \( 1 + 2T + 71T^{2} \)
73 \( 1 + 3.17T + 73T^{2} \)
79 \( 1 + 10.7T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 10.8T + 89T^{2} \)
97 \( 1 - 1.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.347800100291707938316455271083, −7.38449536879295335366965804200, −6.89420283550869055549455107642, −5.98437824275424349483824455126, −5.07670968508387231612777342469, −4.58951721246886266343158634929, −3.54017576023724474879045079164, −2.77937453064625149295467605284, −1.98438468724894009061767019571, −0.870825852437118525615580797732, 0.870825852437118525615580797732, 1.98438468724894009061767019571, 2.77937453064625149295467605284, 3.54017576023724474879045079164, 4.58951721246886266343158634929, 5.07670968508387231612777342469, 5.98437824275424349483824455126, 6.89420283550869055549455107642, 7.38449536879295335366965804200, 8.347800100291707938316455271083

Graph of the $Z$-function along the critical line