L(s) = 1 | + 3-s + 0.414·5-s + 7-s + 9-s − 11-s − 1.58·13-s + 0.414·15-s − 17-s + 3.58·19-s + 21-s + 3.82·23-s − 4.82·25-s + 27-s + 6.82·29-s + 9.89·31-s − 33-s + 0.414·35-s − 8.24·37-s − 1.58·39-s − 4.07·41-s + 0.171·43-s + 0.414·45-s + 2.58·47-s + 49-s − 51-s − 2.24·53-s − 0.414·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.185·5-s + 0.377·7-s + 0.333·9-s − 0.301·11-s − 0.439·13-s + 0.106·15-s − 0.242·17-s + 0.822·19-s + 0.218·21-s + 0.798·23-s − 0.965·25-s + 0.192·27-s + 1.26·29-s + 1.77·31-s − 0.174·33-s + 0.0700·35-s − 1.35·37-s − 0.253·39-s − 0.635·41-s + 0.0261·43-s + 0.0617·45-s + 0.377·47-s + 0.142·49-s − 0.140·51-s − 0.308·53-s − 0.0558·55-s + ⋯ |
Λ(s)=(=(5712s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5712s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.733561018 |
L(21) |
≈ |
2.733561018 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1−T |
| 17 | 1+T |
good | 5 | 1−0.414T+5T2 |
| 11 | 1+T+11T2 |
| 13 | 1+1.58T+13T2 |
| 19 | 1−3.58T+19T2 |
| 23 | 1−3.82T+23T2 |
| 29 | 1−6.82T+29T2 |
| 31 | 1−9.89T+31T2 |
| 37 | 1+8.24T+37T2 |
| 41 | 1+4.07T+41T2 |
| 43 | 1−0.171T+43T2 |
| 47 | 1−2.58T+47T2 |
| 53 | 1+2.24T+53T2 |
| 59 | 1−3.75T+59T2 |
| 61 | 1−10.7T+61T2 |
| 67 | 1−7.65T+67T2 |
| 71 | 1+2T+71T2 |
| 73 | 1+3.17T+73T2 |
| 79 | 1+10.7T+79T2 |
| 83 | 1−6T+83T2 |
| 89 | 1−10.8T+89T2 |
| 97 | 1−1.65T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.347800100291707938316455271083, −7.38449536879295335366965804200, −6.89420283550869055549455107642, −5.98437824275424349483824455126, −5.07670968508387231612777342469, −4.58951721246886266343158634929, −3.54017576023724474879045079164, −2.77937453064625149295467605284, −1.98438468724894009061767019571, −0.870825852437118525615580797732,
0.870825852437118525615580797732, 1.98438468724894009061767019571, 2.77937453064625149295467605284, 3.54017576023724474879045079164, 4.58951721246886266343158634929, 5.07670968508387231612777342469, 5.98437824275424349483824455126, 6.89420283550869055549455107642, 7.38449536879295335366965804200, 8.347800100291707938316455271083