Properties

Label 2-5760-1.1-c1-0-12
Degree $2$
Conductor $5760$
Sign $1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·11-s − 4·13-s − 6·17-s − 6·19-s + 6·23-s + 25-s − 2·29-s + 8·31-s + 8·37-s − 4·43-s − 6·47-s − 7·49-s + 10·53-s − 4·55-s − 12·59-s + 6·61-s + 4·65-s + 8·67-s + 4·71-s + 14·73-s + 4·79-s − 4·83-s + 6·85-s − 4·89-s + 6·95-s + 18·97-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.20·11-s − 1.10·13-s − 1.45·17-s − 1.37·19-s + 1.25·23-s + 1/5·25-s − 0.371·29-s + 1.43·31-s + 1.31·37-s − 0.609·43-s − 0.875·47-s − 49-s + 1.37·53-s − 0.539·55-s − 1.56·59-s + 0.768·61-s + 0.496·65-s + 0.977·67-s + 0.474·71-s + 1.63·73-s + 0.450·79-s − 0.439·83-s + 0.650·85-s − 0.423·89-s + 0.615·95-s + 1.82·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.479743263\)
\(L(\frac12)\) \(\approx\) \(1.479743263\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.221784593047618370443600142588, −7.31234115119924924839519158305, −6.59955013140584688329875296949, −6.31922612991577539753934456878, −4.94021366721806789945391007986, −4.53528577234853491767187121078, −3.78396261931862396131954677074, −2.74258038034632227131235442262, −1.94258996435176496943866233694, −0.63273215052695375258695370179, 0.63273215052695375258695370179, 1.94258996435176496943866233694, 2.74258038034632227131235442262, 3.78396261931862396131954677074, 4.53528577234853491767187121078, 4.94021366721806789945391007986, 6.31922612991577539753934456878, 6.59955013140584688329875296949, 7.31234115119924924839519158305, 8.221784593047618370443600142588

Graph of the $Z$-function along the critical line