Properties

Label 2-5760-1.1-c1-0-25
Degree $2$
Conductor $5760$
Sign $1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 4·7-s + 6·11-s + 4·13-s − 4·17-s + 8·19-s + 25-s + 2·29-s − 2·31-s − 4·35-s − 4·37-s − 6·41-s + 12·43-s + 9·49-s − 14·53-s + 6·55-s − 6·59-s + 6·61-s + 4·65-s + 4·67-s + 8·71-s − 2·73-s − 24·77-s + 6·79-s + 12·83-s − 4·85-s − 6·89-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.51·7-s + 1.80·11-s + 1.10·13-s − 0.970·17-s + 1.83·19-s + 1/5·25-s + 0.371·29-s − 0.359·31-s − 0.676·35-s − 0.657·37-s − 0.937·41-s + 1.82·43-s + 9/7·49-s − 1.92·53-s + 0.809·55-s − 0.781·59-s + 0.768·61-s + 0.496·65-s + 0.488·67-s + 0.949·71-s − 0.234·73-s − 2.73·77-s + 0.675·79-s + 1.31·83-s − 0.433·85-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.171802405\)
\(L(\frac12)\) \(\approx\) \(2.171802405\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 14 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 6 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.233707745846371238456044860170, −7.09752660423814295441357875001, −6.63051434487844039149409502075, −6.16160510715634515135325957529, −5.42672318398502146703592000043, −4.28389757470006853731361576226, −3.55192887194675292853371851200, −3.04129716998461074149844302940, −1.74072122715861936107235590781, −0.818171558753717111286502894239, 0.818171558753717111286502894239, 1.74072122715861936107235590781, 3.04129716998461074149844302940, 3.55192887194675292853371851200, 4.28389757470006853731361576226, 5.42672318398502146703592000043, 6.16160510715634515135325957529, 6.63051434487844039149409502075, 7.09752660423814295441357875001, 8.233707745846371238456044860170

Graph of the $Z$-function along the critical line