L(s) = 1 | + 5-s − 3.12·7-s + 4·11-s + 7.12·13-s + 1.12·17-s − 1.12·19-s + 5.12·23-s + 25-s + 2·29-s − 3.12·31-s − 3.12·35-s + 3.12·37-s − 6.24·41-s − 4·43-s − 5.12·47-s + 2.75·49-s + 12.2·53-s + 4·55-s + 10.2·59-s + 6·61-s + 7.12·65-s − 8·67-s − 10.2·71-s − 8.24·73-s − 12.4·77-s + 15.1·79-s − 12·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s − 1.18·7-s + 1.20·11-s + 1.97·13-s + 0.272·17-s − 0.257·19-s + 1.06·23-s + 0.200·25-s + 0.371·29-s − 0.560·31-s − 0.527·35-s + 0.513·37-s − 0.975·41-s − 0.609·43-s − 0.747·47-s + 0.393·49-s + 1.68·53-s + 0.539·55-s + 1.33·59-s + 0.768·61-s + 0.883·65-s − 0.977·67-s − 1.21·71-s − 0.965·73-s − 1.42·77-s + 1.70·79-s − 1.31·83-s + ⋯ |
Λ(s)=(=(5760s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5760s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.342420631 |
L(21) |
≈ |
2.342420631 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−T |
good | 7 | 1+3.12T+7T2 |
| 11 | 1−4T+11T2 |
| 13 | 1−7.12T+13T2 |
| 17 | 1−1.12T+17T2 |
| 19 | 1+1.12T+19T2 |
| 23 | 1−5.12T+23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1+3.12T+31T2 |
| 37 | 1−3.12T+37T2 |
| 41 | 1+6.24T+41T2 |
| 43 | 1+4T+43T2 |
| 47 | 1+5.12T+47T2 |
| 53 | 1−12.2T+53T2 |
| 59 | 1−10.2T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+8T+67T2 |
| 71 | 1+10.2T+71T2 |
| 73 | 1+8.24T+73T2 |
| 79 | 1−15.1T+79T2 |
| 83 | 1+12T+83T2 |
| 89 | 1+2.24T+89T2 |
| 97 | 1−8.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.439914725970747038292246958927, −7.09911388697602465908604396890, −6.65054274666194798336827535162, −6.08610715828858184376044710782, −5.46412072991822693014752692089, −4.28061382099855004078045895753, −3.57033675440102626384612038426, −3.03038358013232828235457994536, −1.70823334303374909577272147217, −0.864942721513197752730434794887,
0.864942721513197752730434794887, 1.70823334303374909577272147217, 3.03038358013232828235457994536, 3.57033675440102626384612038426, 4.28061382099855004078045895753, 5.46412072991822693014752692089, 6.08610715828858184376044710782, 6.65054274666194798336827535162, 7.09911388697602465908604396890, 8.439914725970747038292246958927