Properties

Label 2-5760-1.1-c1-0-27
Degree $2$
Conductor $5760$
Sign $1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3.12·7-s + 4·11-s + 7.12·13-s + 1.12·17-s − 1.12·19-s + 5.12·23-s + 25-s + 2·29-s − 3.12·31-s − 3.12·35-s + 3.12·37-s − 6.24·41-s − 4·43-s − 5.12·47-s + 2.75·49-s + 12.2·53-s + 4·55-s + 10.2·59-s + 6·61-s + 7.12·65-s − 8·67-s − 10.2·71-s − 8.24·73-s − 12.4·77-s + 15.1·79-s − 12·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.18·7-s + 1.20·11-s + 1.97·13-s + 0.272·17-s − 0.257·19-s + 1.06·23-s + 0.200·25-s + 0.371·29-s − 0.560·31-s − 0.527·35-s + 0.513·37-s − 0.975·41-s − 0.609·43-s − 0.747·47-s + 0.393·49-s + 1.68·53-s + 0.539·55-s + 1.33·59-s + 0.768·61-s + 0.883·65-s − 0.977·67-s − 1.21·71-s − 0.965·73-s − 1.42·77-s + 1.70·79-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.342420631\)
\(L(\frac12)\) \(\approx\) \(2.342420631\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 + 3.12T + 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
13 \( 1 - 7.12T + 13T^{2} \)
17 \( 1 - 1.12T + 17T^{2} \)
19 \( 1 + 1.12T + 19T^{2} \)
23 \( 1 - 5.12T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 3.12T + 31T^{2} \)
37 \( 1 - 3.12T + 37T^{2} \)
41 \( 1 + 6.24T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 5.12T + 47T^{2} \)
53 \( 1 - 12.2T + 53T^{2} \)
59 \( 1 - 10.2T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 + 10.2T + 71T^{2} \)
73 \( 1 + 8.24T + 73T^{2} \)
79 \( 1 - 15.1T + 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 + 2.24T + 89T^{2} \)
97 \( 1 - 8.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.439914725970747038292246958927, −7.09911388697602465908604396890, −6.65054274666194798336827535162, −6.08610715828858184376044710782, −5.46412072991822693014752692089, −4.28061382099855004078045895753, −3.57033675440102626384612038426, −3.03038358013232828235457994536, −1.70823334303374909577272147217, −0.864942721513197752730434794887, 0.864942721513197752730434794887, 1.70823334303374909577272147217, 3.03038358013232828235457994536, 3.57033675440102626384612038426, 4.28061382099855004078045895753, 5.46412072991822693014752692089, 6.08610715828858184376044710782, 6.65054274666194798336827535162, 7.09911388697602465908604396890, 8.439914725970747038292246958927

Graph of the $Z$-function along the critical line