Properties

Label 2-5760-1.1-c1-0-34
Degree $2$
Conductor $5760$
Sign $1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 5.12·7-s + 2·11-s − 5.12·13-s + 1.12·17-s − 5.12·19-s + 5.12·23-s + 25-s − 8.24·29-s − 7.12·31-s + 5.12·35-s + 5.12·37-s + 2·41-s + 6.24·43-s + 13.1·47-s + 19.2·49-s + 10·53-s + 2·55-s + 6·59-s + 2·61-s − 5.12·65-s + 6.24·67-s + 8·71-s − 4.24·73-s + 10.2·77-s − 4.87·79-s − 4·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.93·7-s + 0.603·11-s − 1.42·13-s + 0.272·17-s − 1.17·19-s + 1.06·23-s + 0.200·25-s − 1.53·29-s − 1.27·31-s + 0.865·35-s + 0.842·37-s + 0.312·41-s + 0.952·43-s + 1.91·47-s + 2.74·49-s + 1.37·53-s + 0.269·55-s + 0.781·59-s + 0.256·61-s − 0.635·65-s + 0.763·67-s + 0.949·71-s − 0.496·73-s + 1.16·77-s − 0.548·79-s − 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.786611436\)
\(L(\frac12)\) \(\approx\) \(2.786611436\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
good7 \( 1 - 5.12T + 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 5.12T + 13T^{2} \)
17 \( 1 - 1.12T + 17T^{2} \)
19 \( 1 + 5.12T + 19T^{2} \)
23 \( 1 - 5.12T + 23T^{2} \)
29 \( 1 + 8.24T + 29T^{2} \)
31 \( 1 + 7.12T + 31T^{2} \)
37 \( 1 - 5.12T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 6.24T + 43T^{2} \)
47 \( 1 - 13.1T + 47T^{2} \)
53 \( 1 - 10T + 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 6.24T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 4.24T + 73T^{2} \)
79 \( 1 + 4.87T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 - 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.001644622231715371082345259487, −7.43286128492331394867783341088, −6.91970303859033905154740306463, −5.67011872211686513557467980031, −5.33631576215886632835076523247, −4.47703493935471993178056520398, −3.92245559356035957251808557618, −2.41364692880760398643922920785, −2.00563147968681177008788447608, −0.918468970184361290672860681967, 0.918468970184361290672860681967, 2.00563147968681177008788447608, 2.41364692880760398643922920785, 3.92245559356035957251808557618, 4.47703493935471993178056520398, 5.33631576215886632835076523247, 5.67011872211686513557467980031, 6.91970303859033905154740306463, 7.43286128492331394867783341088, 8.001644622231715371082345259487

Graph of the $Z$-function along the critical line