Properties

Label 2-5760-1.1-c1-0-47
Degree $2$
Conductor $5760$
Sign $-1$
Analytic cond. $45.9938$
Root an. cond. $6.78187$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 3.23·7-s − 2·11-s + 4.47·13-s − 4.47·17-s + 4.47·19-s + 4.76·23-s + 25-s − 2·29-s + 6.47·31-s + 3.23·35-s − 6.94·37-s − 12.4·41-s + 7.70·43-s + 7.23·47-s + 3.47·49-s + 0.472·53-s + 2·55-s − 8.47·59-s + 6·61-s − 4.47·65-s − 7.70·67-s + 2.47·71-s + 4.47·73-s + 6.47·77-s + 12.9·79-s − 3.70·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.22·7-s − 0.603·11-s + 1.24·13-s − 1.08·17-s + 1.02·19-s + 0.993·23-s + 0.200·25-s − 0.371·29-s + 1.16·31-s + 0.546·35-s − 1.14·37-s − 1.94·41-s + 1.17·43-s + 1.05·47-s + 0.496·49-s + 0.0648·53-s + 0.269·55-s − 1.10·59-s + 0.768·61-s − 0.554·65-s − 0.941·67-s + 0.293·71-s + 0.523·73-s + 0.737·77-s + 1.45·79-s − 0.407·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5760\)    =    \(2^{7} \cdot 3^{2} \cdot 5\)
Sign: $-1$
Analytic conductor: \(45.9938\)
Root analytic conductor: \(6.78187\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5760,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
good7 \( 1 + 3.23T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 + 4.47T + 17T^{2} \)
19 \( 1 - 4.47T + 19T^{2} \)
23 \( 1 - 4.76T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 6.47T + 31T^{2} \)
37 \( 1 + 6.94T + 37T^{2} \)
41 \( 1 + 12.4T + 41T^{2} \)
43 \( 1 - 7.70T + 43T^{2} \)
47 \( 1 - 7.23T + 47T^{2} \)
53 \( 1 - 0.472T + 53T^{2} \)
59 \( 1 + 8.47T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 7.70T + 67T^{2} \)
71 \( 1 - 2.47T + 71T^{2} \)
73 \( 1 - 4.47T + 73T^{2} \)
79 \( 1 - 12.9T + 79T^{2} \)
83 \( 1 + 3.70T + 83T^{2} \)
89 \( 1 - 14.9T + 89T^{2} \)
97 \( 1 + 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76296485347228859662553314243, −6.88353000676477203223288685244, −6.52868974567642153735063781421, −5.62893881024335508772399412649, −4.89077693448926163411348733024, −3.88404107900890110028005616200, −3.29523348158617410245571352354, −2.55744828075660061295288842500, −1.17557750453053293088730808952, 0, 1.17557750453053293088730808952, 2.55744828075660061295288842500, 3.29523348158617410245571352354, 3.88404107900890110028005616200, 4.89077693448926163411348733024, 5.62893881024335508772399412649, 6.52868974567642153735063781421, 6.88353000676477203223288685244, 7.76296485347228859662553314243

Graph of the $Z$-function along the critical line