L(s) = 1 | − 5-s − 3.23·7-s − 2·11-s + 4.47·13-s − 4.47·17-s + 4.47·19-s + 4.76·23-s + 25-s − 2·29-s + 6.47·31-s + 3.23·35-s − 6.94·37-s − 12.4·41-s + 7.70·43-s + 7.23·47-s + 3.47·49-s + 0.472·53-s + 2·55-s − 8.47·59-s + 6·61-s − 4.47·65-s − 7.70·67-s + 2.47·71-s + 4.47·73-s + 6.47·77-s + 12.9·79-s − 3.70·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 1.22·7-s − 0.603·11-s + 1.24·13-s − 1.08·17-s + 1.02·19-s + 0.993·23-s + 0.200·25-s − 0.371·29-s + 1.16·31-s + 0.546·35-s − 1.14·37-s − 1.94·41-s + 1.17·43-s + 1.05·47-s + 0.496·49-s + 0.0648·53-s + 0.269·55-s − 1.10·59-s + 0.768·61-s − 0.554·65-s − 0.941·67-s + 0.293·71-s + 0.523·73-s + 0.737·77-s + 1.45·79-s − 0.407·83-s + ⋯ |
Λ(s)=(=(5760s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5760s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+T |
good | 7 | 1+3.23T+7T2 |
| 11 | 1+2T+11T2 |
| 13 | 1−4.47T+13T2 |
| 17 | 1+4.47T+17T2 |
| 19 | 1−4.47T+19T2 |
| 23 | 1−4.76T+23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1−6.47T+31T2 |
| 37 | 1+6.94T+37T2 |
| 41 | 1+12.4T+41T2 |
| 43 | 1−7.70T+43T2 |
| 47 | 1−7.23T+47T2 |
| 53 | 1−0.472T+53T2 |
| 59 | 1+8.47T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+7.70T+67T2 |
| 71 | 1−2.47T+71T2 |
| 73 | 1−4.47T+73T2 |
| 79 | 1−12.9T+79T2 |
| 83 | 1+3.70T+83T2 |
| 89 | 1−14.9T+89T2 |
| 97 | 1+16.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.76296485347228859662553314243, −6.88353000676477203223288685244, −6.52868974567642153735063781421, −5.62893881024335508772399412649, −4.89077693448926163411348733024, −3.88404107900890110028005616200, −3.29523348158617410245571352354, −2.55744828075660061295288842500, −1.17557750453053293088730808952, 0,
1.17557750453053293088730808952, 2.55744828075660061295288842500, 3.29523348158617410245571352354, 3.88404107900890110028005616200, 4.89077693448926163411348733024, 5.62893881024335508772399412649, 6.52868974567642153735063781421, 6.88353000676477203223288685244, 7.76296485347228859662553314243