L(s) = 1 | + 4-s + 7-s − 1.73i·13-s + 16-s − 25-s + 28-s − 1.73i·31-s + 1.73i·37-s − 43-s − 1.73i·52-s + 61-s + 64-s + 1.73i·67-s − 73-s + 1.73i·79-s + ⋯ |
L(s) = 1 | + 4-s + 7-s − 1.73i·13-s + 16-s − 25-s + 28-s − 1.73i·31-s + 1.73i·37-s − 43-s − 1.73i·52-s + 61-s + 64-s + 1.73i·67-s − 73-s + 1.73i·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 + 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3249 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.917 + 0.397i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.794523058\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.794523058\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + 1.73iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + 1.73iT - T^{2} \) |
| 37 | \( 1 - 1.73iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 - 1.73iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.393072788487918333246616729286, −8.030632088042942430648472805571, −7.46052676690528089544895530621, −6.52310175908521593121712440784, −5.71195110835093055165030796696, −5.17487453540568805437357798884, −4.04602307569982952741835905998, −3.05578334199597412486305655856, −2.24075731069851620029547630904, −1.18373433663797589396647250814,
1.63304827113624410040614517528, 2.03366202953463195198326914369, 3.30135493110515896945165933230, 4.24226939882013055789386143829, 5.06936897426915465335118413157, 5.95235361466803400733115531047, 6.76285230170488720401171019306, 7.29228633293852951038404810286, 8.066762217316811310599025086328, 8.812151473651458743572696761973