L(s) = 1 | + 4-s + 7-s − 1.73i·13-s + 16-s − 25-s + 28-s − 1.73i·31-s + 1.73i·37-s − 43-s − 1.73i·52-s + 61-s + 64-s + 1.73i·67-s − 73-s + 1.73i·79-s + ⋯ |
L(s) = 1 | + 4-s + 7-s − 1.73i·13-s + 16-s − 25-s + 28-s − 1.73i·31-s + 1.73i·37-s − 43-s − 1.73i·52-s + 61-s + 64-s + 1.73i·67-s − 73-s + 1.73i·79-s + ⋯ |
Λ(s)=(=(3249s/2ΓC(s)L(s)(0.917+0.397i)Λ(1−s)
Λ(s)=(=(3249s/2ΓC(s)L(s)(0.917+0.397i)Λ(1−s)
Degree: |
2 |
Conductor: |
3249
= 32⋅192
|
Sign: |
0.917+0.397i
|
Analytic conductor: |
1.62146 |
Root analytic conductor: |
1.27336 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3249(721,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3249, ( :0), 0.917+0.397i)
|
Particular Values
L(21) |
≈ |
1.794523058 |
L(21) |
≈ |
1.794523058 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1 |
good | 2 | 1−T2 |
| 5 | 1+T2 |
| 7 | 1−T+T2 |
| 11 | 1+T2 |
| 13 | 1+1.73iT−T2 |
| 17 | 1+T2 |
| 23 | 1+T2 |
| 29 | 1−T2 |
| 31 | 1+1.73iT−T2 |
| 37 | 1−1.73iT−T2 |
| 41 | 1−T2 |
| 43 | 1+T+T2 |
| 47 | 1+T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1−T+T2 |
| 67 | 1−1.73iT−T2 |
| 71 | 1−T2 |
| 73 | 1+T+T2 |
| 79 | 1−1.73iT−T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.393072788487918333246616729286, −8.030632088042942430648472805571, −7.46052676690528089544895530621, −6.52310175908521593121712440784, −5.71195110835093055165030796696, −5.17487453540568805437357798884, −4.04602307569982952741835905998, −3.05578334199597412486305655856, −2.24075731069851620029547630904, −1.18373433663797589396647250814,
1.63304827113624410040614517528, 2.03366202953463195198326914369, 3.30135493110515896945165933230, 4.24226939882013055789386143829, 5.06936897426915465335118413157, 5.95235361466803400733115531047, 6.76285230170488720401171019306, 7.29228633293852951038404810286, 8.066762217316811310599025086328, 8.812151473651458743572696761973