L(s) = 1 | − 2-s − 3·3-s + 4-s − 3·5-s + 3·6-s − 2·7-s − 8-s + 6·9-s + 3·10-s − 11-s − 3·12-s + 3·13-s + 2·14-s + 9·15-s + 16-s − 4·17-s − 6·18-s − 8·19-s − 3·20-s + 6·21-s + 22-s + 3·24-s + 4·25-s − 3·26-s − 9·27-s − 2·28-s − 29-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.73·3-s + 1/2·4-s − 1.34·5-s + 1.22·6-s − 0.755·7-s − 0.353·8-s + 2·9-s + 0.948·10-s − 0.301·11-s − 0.866·12-s + 0.832·13-s + 0.534·14-s + 2.32·15-s + 1/4·16-s − 0.970·17-s − 1.41·18-s − 1.83·19-s − 0.670·20-s + 1.30·21-s + 0.213·22-s + 0.612·24-s + 4/5·25-s − 0.588·26-s − 1.73·27-s − 0.377·28-s − 0.185·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 58 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 29 | \( 1 + T \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 5 | \( 1 + 3 T + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 - 3 T + p T^{2} \) |
| 17 | \( 1 + 4 T + p T^{2} \) |
| 19 | \( 1 + 8 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 31 | \( 1 - 3 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 7 T + p T^{2} \) |
| 47 | \( 1 - 11 T + p T^{2} \) |
| 53 | \( 1 - T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 - 4 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 + 2 T + p T^{2} \) |
| 73 | \( 1 + 12 T + p T^{2} \) |
| 79 | \( 1 + 7 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.47776366797874230167954280335, −12.96417955859963649393323437145, −12.07048630043891833907177728325, −11.08257082663040259358467539040, −10.46054334513251190747035603866, −8.643506374817898327978246248838, −7.09229495493052892657316288498, −6.11755064298029935226028768008, −4.22146327216160305586457647308, 0,
4.22146327216160305586457647308, 6.11755064298029935226028768008, 7.09229495493052892657316288498, 8.643506374817898327978246248838, 10.46054334513251190747035603866, 11.08257082663040259358467539040, 12.07048630043891833907177728325, 12.96417955859963649393323437145, 15.47776366797874230167954280335