L(s) = 1 | + (−0.433 + 0.900i)2-s + (2.19 + 1.74i)3-s + (−0.623 − 0.781i)4-s + (−3.43 − 1.65i)5-s + (−2.52 + 1.21i)6-s + (1.36 − 1.71i)7-s + (0.974 − 0.222i)8-s + (1.07 + 4.72i)9-s + (2.98 − 2.38i)10-s + (−0.0647 − 0.0147i)11-s − 2.80i·12-s + (−0.157 + 0.687i)13-s + (0.949 + 1.97i)14-s + (−4.64 − 9.63i)15-s + (−0.222 + 0.974i)16-s − 3.46i·17-s + ⋯ |
L(s) = 1 | + (−0.306 + 0.637i)2-s + (1.26 + 1.00i)3-s + (−0.311 − 0.390i)4-s + (−1.53 − 0.740i)5-s + (−1.03 + 0.496i)6-s + (0.515 − 0.646i)7-s + (0.344 − 0.0786i)8-s + (0.359 + 1.57i)9-s + (0.943 − 0.752i)10-s + (−0.0195 − 0.00445i)11-s − 0.808i·12-s + (−0.0435 + 0.190i)13-s + (0.253 + 0.526i)14-s + (−1.19 − 2.48i)15-s + (−0.0556 + 0.243i)16-s − 0.839i·17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(0.471−0.881i)Λ(2−s)
Λ(s)=(=(58s/2ΓC(s+1/2)L(s)(0.471−0.881i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
0.471−0.881i
|
Analytic conductor: |
0.463132 |
Root analytic conductor: |
0.680538 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1/2), 0.471−0.881i)
|
Particular Values
L(1) |
≈ |
0.755380+0.452608i |
L(21) |
≈ |
0.755380+0.452608i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.433−0.900i)T |
| 29 | 1+(−2.16−4.92i)T |
good | 3 | 1+(−2.19−1.74i)T+(0.667+2.92i)T2 |
| 5 | 1+(3.43+1.65i)T+(3.11+3.90i)T2 |
| 7 | 1+(−1.36+1.71i)T+(−1.55−6.82i)T2 |
| 11 | 1+(0.0647+0.0147i)T+(9.91+4.77i)T2 |
| 13 | 1+(0.157−0.687i)T+(−11.7−5.64i)T2 |
| 17 | 1+3.46iT−17T2 |
| 19 | 1+(2.15−1.72i)T+(4.22−18.5i)T2 |
| 23 | 1+(5.68−2.73i)T+(14.3−17.9i)T2 |
| 31 | 1+(−3.24+6.74i)T+(−19.3−24.2i)T2 |
| 37 | 1+(8.31−1.89i)T+(33.3−16.0i)T2 |
| 41 | 1−2.48iT−41T2 |
| 43 | 1+(0.624+1.29i)T+(−26.8+33.6i)T2 |
| 47 | 1+(−8.77−2.00i)T+(42.3+20.3i)T2 |
| 53 | 1+(−2.90−1.40i)T+(33.0+41.4i)T2 |
| 59 | 1−1.24T+59T2 |
| 61 | 1+(−2.61−2.08i)T+(13.5+59.4i)T2 |
| 67 | 1+(1.56+6.83i)T+(−60.3+29.0i)T2 |
| 71 | 1+(−2.24+9.84i)T+(−63.9−30.8i)T2 |
| 73 | 1+(−1.31−2.73i)T+(−45.5+57.0i)T2 |
| 79 | 1+(−2.17+0.497i)T+(71.1−34.2i)T2 |
| 83 | 1+(3.82+4.79i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−7.59+15.7i)T+(−55.4−69.5i)T2 |
| 97 | 1+(1.72−1.37i)T+(21.5−94.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.56627221977377300087634536906, −14.56332265420272088652104753752, −13.66238402314968807641065588515, −11.92368776132151169313305339790, −10.48689436724372215945374906664, −9.174340012208870987245927808779, −8.230017133506104101219716494483, −7.52660254300522152994342854592, −4.71804452420580215597278671236, −3.83227926987666197740733034857,
2.43973740234156098959406793371, 3.85089157060427079795415542081, 6.95558415390046699058583900476, 8.156113741894002568085331732779, 8.550469245682265001244106076945, 10.52304575358119410725165112695, 11.86679795551209202203146726032, 12.49037408651506710036756494636, 13.93121470601692306879404371545, 14.86224018941700166606202162060