L(s) = 1 | + i·2-s + i·3-s − 4-s + 5-s − 6-s − 2·7-s − i·8-s + 2·9-s + i·10-s − 5i·11-s − i·12-s − 13-s − 2i·14-s + i·15-s + 16-s − 2i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.447·5-s − 0.408·6-s − 0.755·7-s − 0.353i·8-s + 0.666·9-s + 0.316i·10-s − 1.50i·11-s − 0.288i·12-s − 0.277·13-s − 0.534i·14-s + 0.258i·15-s + 0.250·16-s − 0.485i·17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(0.371−0.928i)Λ(2−s)
Λ(s)=(=(58s/2ΓC(s+1/2)L(s)(0.371−0.928i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
0.371−0.928i
|
Analytic conductor: |
0.463132 |
Root analytic conductor: |
0.680538 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(57,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1/2), 0.371−0.928i)
|
Particular Values
L(1) |
≈ |
0.705123+0.477391i |
L(21) |
≈ |
0.705123+0.477391i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 29 | 1+(−5−2i)T |
good | 3 | 1−iT−3T2 |
| 5 | 1−T+5T2 |
| 7 | 1+2T+7T2 |
| 11 | 1+5iT−11T2 |
| 13 | 1+T+13T2 |
| 17 | 1+2iT−17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+6T+23T2 |
| 31 | 1−5iT−31T2 |
| 37 | 1−8iT−37T2 |
| 41 | 1+10iT−41T2 |
| 43 | 1+9iT−43T2 |
| 47 | 1−3iT−47T2 |
| 53 | 1+T+53T2 |
| 59 | 1−10T+59T2 |
| 61 | 1+10iT−61T2 |
| 67 | 1−8T+67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1−16iT−73T2 |
| 79 | 1+iT−79T2 |
| 83 | 1−14T+83T2 |
| 89 | 1−14iT−89T2 |
| 97 | 1+2iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.87128460803352451050194612739, −14.26119778816102661935931644068, −13.52602251868703231743237573621, −12.19159594137950504415190357871, −10.42310480291414364991838362568, −9.606145269789884566896974019170, −8.304437480803866732936226297063, −6.66752135726560757641321157411, −5.46741702281727274032318267978, −3.67787809784757201819998183332,
2.15684754175300937699526679967, 4.37322746476470901250864601121, 6.35874181585401900380951870048, 7.69276887016559049573974177703, 9.574900076543553179030084851064, 10.11355450344949753919883085106, 11.84645776206177216181121347730, 12.79223661837676310690463501944, 13.41184115269456148166006138874, 14.83758216261447345291267044001