L(s) = 1 | + (−0.974 − 0.222i)2-s + (0.626 + 1.30i)3-s + (0.900 + 0.433i)4-s + (−0.308 + 1.35i)5-s + (−0.321 − 1.40i)6-s + (1.78 − 0.861i)7-s + (−0.781 − 0.623i)8-s + (0.568 − 0.712i)9-s + (0.601 − 1.24i)10-s + (−2.70 + 2.15i)11-s + 1.44i·12-s + (−3.81 − 4.77i)13-s + (−1.93 + 0.442i)14-s + (−1.95 + 0.445i)15-s + (0.623 + 0.781i)16-s − 4.25i·17-s + ⋯ |
L(s) = 1 | + (−0.689 − 0.157i)2-s + (0.361 + 0.751i)3-s + (0.450 + 0.216i)4-s + (−0.137 + 0.604i)5-s + (−0.131 − 0.575i)6-s + (0.676 − 0.325i)7-s + (−0.276 − 0.220i)8-s + (0.189 − 0.237i)9-s + (0.190 − 0.394i)10-s + (−0.814 + 0.649i)11-s + 0.417i·12-s + (−1.05 − 1.32i)13-s + (−0.517 + 0.118i)14-s + (−0.504 + 0.115i)15-s + (0.155 + 0.195i)16-s − 1.03i·17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(0.863−0.505i)Λ(2−s)
Λ(s)=(=(58s/2ΓC(s+1/2)L(s)(0.863−0.505i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
0.863−0.505i
|
Analytic conductor: |
0.463132 |
Root analytic conductor: |
0.680538 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(33,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1/2), 0.863−0.505i)
|
Particular Values
L(1) |
≈ |
0.699729+0.189730i |
L(21) |
≈ |
0.699729+0.189730i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.974+0.222i)T |
| 29 | 1+(4.17+3.40i)T |
good | 3 | 1+(−0.626−1.30i)T+(−1.87+2.34i)T2 |
| 5 | 1+(0.308−1.35i)T+(−4.50−2.16i)T2 |
| 7 | 1+(−1.78+0.861i)T+(4.36−5.47i)T2 |
| 11 | 1+(2.70−2.15i)T+(2.44−10.7i)T2 |
| 13 | 1+(3.81+4.77i)T+(−2.89+12.6i)T2 |
| 17 | 1+4.25iT−17T2 |
| 19 | 1+(0.940−1.95i)T+(−11.8−14.8i)T2 |
| 23 | 1+(−0.127−0.556i)T+(−20.7+9.97i)T2 |
| 31 | 1+(−5.88−1.34i)T+(27.9+13.4i)T2 |
| 37 | 1+(2.12+1.69i)T+(8.23+36.0i)T2 |
| 41 | 1−9.14iT−41T2 |
| 43 | 1+(10.7−2.46i)T+(38.7−18.6i)T2 |
| 47 | 1+(3.89−3.10i)T+(10.4−45.8i)T2 |
| 53 | 1+(−2.32+10.1i)T+(−47.7−22.9i)T2 |
| 59 | 1−9.01T+59T2 |
| 61 | 1+(−4.16−8.64i)T+(−38.0+47.6i)T2 |
| 67 | 1+(7.82−9.81i)T+(−14.9−65.3i)T2 |
| 71 | 1+(2.66+3.34i)T+(−15.7+69.2i)T2 |
| 73 | 1+(−6.80+1.55i)T+(65.7−31.6i)T2 |
| 79 | 1+(9.09+7.25i)T+(17.5+77.0i)T2 |
| 83 | 1+(−9.76−4.70i)T+(51.7+64.8i)T2 |
| 89 | 1+(2.78+0.634i)T+(80.1+38.6i)T2 |
| 97 | 1+(1.05−2.18i)T+(−60.4−75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.13728038663277387593742098598, −14.73321124051844137234097681855, −12.96523139826998736331195466402, −11.58593935244096194481951383019, −10.29737400718234137986458624291, −9.816370901908045352300578843734, −8.141033604085866630855223395902, −7.15508496456974016707390823056, −4.88175578109012888090872672260, −2.95412219451958159327794785061,
2.02862561492139606548171251717, 4.97360123664242439891011969067, 6.85915834948548848428431638868, 8.081200169120690533548154079707, 8.815452540761104622005400492832, 10.41453237763452535379438099440, 11.74596238501443488128019185687, 12.82052213848433658319168717174, 14.00003912717072950025257867463, 15.15767747313980539985836955715