L(s) = 1 | + (−0.222 − 0.974i)2-s + (1.56 + 0.755i)3-s + (−0.900 + 0.433i)4-s + (0.110 + 0.482i)5-s + (0.387 − 1.69i)6-s + (−2.82 − 1.36i)7-s + (0.623 + 0.781i)8-s + (0.0208 + 0.0261i)9-s + (0.445 − 0.214i)10-s + (0.870 − 1.09i)11-s − 1.74·12-s + (−3.56 + 4.46i)13-s + (−0.698 + 3.05i)14-s + (−0.191 + 0.840i)15-s + (0.623 − 0.781i)16-s + 5.31·17-s + ⋯ |
L(s) = 1 | + (−0.157 − 0.689i)2-s + (0.905 + 0.436i)3-s + (−0.450 + 0.216i)4-s + (0.0492 + 0.215i)5-s + (0.158 − 0.693i)6-s + (−1.06 − 0.514i)7-s + (0.220 + 0.276i)8-s + (0.00695 + 0.00871i)9-s + (0.140 − 0.0678i)10-s + (0.262 − 0.329i)11-s − 0.502·12-s + (−0.988 + 1.23i)13-s + (−0.186 + 0.817i)14-s + (−0.0495 + 0.216i)15-s + (0.155 − 0.195i)16-s + 1.28·17-s + ⋯ |
Λ(s)=(=(58s/2ΓC(s)L(s)(0.895+0.444i)Λ(2−s)
Λ(s)=(=(58s/2ΓC(s+1/2)L(s)(0.895+0.444i)Λ(1−s)
Degree: |
2 |
Conductor: |
58
= 2⋅29
|
Sign: |
0.895+0.444i
|
Analytic conductor: |
0.463132 |
Root analytic conductor: |
0.680538 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ58(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 58, ( :1/2), 0.895+0.444i)
|
Particular Values
L(1) |
≈ |
0.888209−0.208146i |
L(21) |
≈ |
0.888209−0.208146i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.222+0.974i)T |
| 29 | 1+(−5.38−0.0414i)T |
good | 3 | 1+(−1.56−0.755i)T+(1.87+2.34i)T2 |
| 5 | 1+(−0.110−0.482i)T+(−4.50+2.16i)T2 |
| 7 | 1+(2.82+1.36i)T+(4.36+5.47i)T2 |
| 11 | 1+(−0.870+1.09i)T+(−2.44−10.7i)T2 |
| 13 | 1+(3.56−4.46i)T+(−2.89−12.6i)T2 |
| 17 | 1−5.31T+17T2 |
| 19 | 1+(4.47−2.15i)T+(11.8−14.8i)T2 |
| 23 | 1+(−0.181+0.793i)T+(−20.7−9.97i)T2 |
| 31 | 1+(1.41+6.20i)T+(−27.9+13.4i)T2 |
| 37 | 1+(−5.56−6.97i)T+(−8.23+36.0i)T2 |
| 41 | 1+4.01T+41T2 |
| 43 | 1+(−0.310+1.36i)T+(−38.7−18.6i)T2 |
| 47 | 1+(6.42−8.05i)T+(−10.4−45.8i)T2 |
| 53 | 1+(0.944+4.13i)T+(−47.7+22.9i)T2 |
| 59 | 1−11.1T+59T2 |
| 61 | 1+(4.38+2.11i)T+(38.0+47.6i)T2 |
| 67 | 1+(−4.45−5.58i)T+(−14.9+65.3i)T2 |
| 71 | 1+(−3.76+4.72i)T+(−15.7−69.2i)T2 |
| 73 | 1+(2.73−11.9i)T+(−65.7−31.6i)T2 |
| 79 | 1+(5.86+7.35i)T+(−17.5+77.0i)T2 |
| 83 | 1+(11.4−5.51i)T+(51.7−64.8i)T2 |
| 89 | 1+(0.398+1.74i)T+(−80.1+38.6i)T2 |
| 97 | 1+(3.42−1.64i)T+(60.4−75.8i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.71496146257308266435565361037, −14.14561189836495382902830381805, −12.86781172681557728591155802493, −11.72650993109979044333554479108, −10.11306504593307121714581040135, −9.564520212765823918553394556079, −8.290700106888424980790488671685, −6.58664819165781313818070734103, −4.14835157466600069837477845827, −2.88304899228522888301033541176,
2.97289032003055873712764771288, 5.34179659423460159677096180889, 6.91261036887911701110291974698, 8.092593397426579649064035243793, 9.142357688520052268455155309236, 10.24135360093120599801891144439, 12.46742317437420017130985695710, 13.04591739612882840996438901497, 14.41780360727538971274792358777, 15.09727535894556795918395182625