L(s) = 1 | + (−0.974 + 0.222i)2-s + (0.900 − 0.433i)4-s + (0.433 − 0.900i)5-s + (−0.781 + 0.623i)8-s + (0.623 + 0.781i)9-s + (−0.222 + 0.974i)10-s + (0.0739 + 0.656i)13-s + (0.623 − 0.781i)16-s − 1.94i·17-s + (−0.781 − 0.623i)18-s − i·20-s + (−0.623 − 0.781i)25-s + (−0.218 − 0.623i)26-s + (0.781 + 0.623i)29-s + (−0.433 + 0.900i)32-s + ⋯ |
L(s) = 1 | + (−0.974 + 0.222i)2-s + (0.900 − 0.433i)4-s + (0.433 − 0.900i)5-s + (−0.781 + 0.623i)8-s + (0.623 + 0.781i)9-s + (−0.222 + 0.974i)10-s + (0.0739 + 0.656i)13-s + (0.623 − 0.781i)16-s − 1.94i·17-s + (−0.781 − 0.623i)18-s − i·20-s + (−0.623 − 0.781i)25-s + (−0.218 − 0.623i)26-s + (0.781 + 0.623i)29-s + (−0.433 + 0.900i)32-s + ⋯ |
Λ(s)=(=(580s/2ΓC(s)L(s)(0.973+0.227i)Λ(1−s)
Λ(s)=(=(580s/2ΓC(s)L(s)(0.973+0.227i)Λ(1−s)
Degree: |
2 |
Conductor: |
580
= 22⋅5⋅29
|
Sign: |
0.973+0.227i
|
Analytic conductor: |
0.289457 |
Root analytic conductor: |
0.538012 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ580(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 580, ( :0), 0.973+0.227i)
|
Particular Values
L(21) |
≈ |
0.6758671724 |
L(21) |
≈ |
0.6758671724 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.974−0.222i)T |
| 5 | 1+(−0.433+0.900i)T |
| 29 | 1+(−0.781−0.623i)T |
good | 3 | 1+(−0.623−0.781i)T2 |
| 7 | 1+(−0.781+0.623i)T2 |
| 11 | 1+(0.974−0.222i)T2 |
| 13 | 1+(−0.0739−0.656i)T+(−0.974+0.222i)T2 |
| 17 | 1+1.94iT−T2 |
| 19 | 1+(−0.781−0.623i)T2 |
| 23 | 1+(−0.433+0.900i)T2 |
| 31 | 1+(−0.433−0.900i)T2 |
| 37 | 1+(−1.12−1.40i)T+(−0.222+0.974i)T2 |
| 41 | 1+(1.33+1.33i)T+iT2 |
| 43 | 1+(0.900+0.433i)T2 |
| 47 | 1+(0.222+0.974i)T2 |
| 53 | 1+(0.566−0.900i)T+(−0.433−0.900i)T2 |
| 59 | 1+T2 |
| 61 | 1+(1.59−0.559i)T+(0.781−0.623i)T2 |
| 67 | 1+(0.974+0.222i)T2 |
| 71 | 1+(−0.222−0.974i)T2 |
| 73 | 1+(0.433+0.0990i)T+(0.900+0.433i)T2 |
| 79 | 1+(0.974+0.222i)T2 |
| 83 | 1+(−0.781−0.623i)T2 |
| 89 | 1+(1.05−1.68i)T+(−0.433−0.900i)T2 |
| 97 | 1+(0.781−0.376i)T+(0.623−0.781i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64593130410493557221926003843, −9.818157109211567959923238594485, −9.191259372817523253695266683254, −8.380114174242819171004951993073, −7.42274457321616635425387424862, −6.63789983539076172326376544139, −5.37406339500333712396953801046, −4.61390382933098271482369573623, −2.61897881850716786709465327375, −1.35833975393823302682912603802,
1.61442408924215957215912133969, 2.96653439068943675524219499991, 3.97785223895348764154886052324, 5.99354848338282178708247553256, 6.46903040996226286106166433456, 7.52671728901673121945235712072, 8.330783441536245466293252554503, 9.402563101604943090062803475103, 10.15423809263998371207669537349, 10.64835153304434470130885556805