L(s) = 1 | + (−0.974 + 0.222i)2-s + (0.900 − 0.433i)4-s + (0.433 − 0.900i)5-s + (−0.781 + 0.623i)8-s + (0.623 + 0.781i)9-s + (−0.222 + 0.974i)10-s + (0.0739 + 0.656i)13-s + (0.623 − 0.781i)16-s − 1.94i·17-s + (−0.781 − 0.623i)18-s − i·20-s + (−0.623 − 0.781i)25-s + (−0.218 − 0.623i)26-s + (0.781 + 0.623i)29-s + (−0.433 + 0.900i)32-s + ⋯ |
L(s) = 1 | + (−0.974 + 0.222i)2-s + (0.900 − 0.433i)4-s + (0.433 − 0.900i)5-s + (−0.781 + 0.623i)8-s + (0.623 + 0.781i)9-s + (−0.222 + 0.974i)10-s + (0.0739 + 0.656i)13-s + (0.623 − 0.781i)16-s − 1.94i·17-s + (−0.781 − 0.623i)18-s − i·20-s + (−0.623 − 0.781i)25-s + (−0.218 − 0.623i)26-s + (0.781 + 0.623i)29-s + (−0.433 + 0.900i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.227i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.227i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6758671724\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6758671724\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.974 - 0.222i)T \) |
| 5 | \( 1 + (-0.433 + 0.900i)T \) |
| 29 | \( 1 + (-0.781 - 0.623i)T \) |
good | 3 | \( 1 + (-0.623 - 0.781i)T^{2} \) |
| 7 | \( 1 + (-0.781 + 0.623i)T^{2} \) |
| 11 | \( 1 + (0.974 - 0.222i)T^{2} \) |
| 13 | \( 1 + (-0.0739 - 0.656i)T + (-0.974 + 0.222i)T^{2} \) |
| 17 | \( 1 + 1.94iT - T^{2} \) |
| 19 | \( 1 + (-0.781 - 0.623i)T^{2} \) |
| 23 | \( 1 + (-0.433 + 0.900i)T^{2} \) |
| 31 | \( 1 + (-0.433 - 0.900i)T^{2} \) |
| 37 | \( 1 + (-1.12 - 1.40i)T + (-0.222 + 0.974i)T^{2} \) |
| 41 | \( 1 + (1.33 + 1.33i)T + iT^{2} \) |
| 43 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 47 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 53 | \( 1 + (0.566 - 0.900i)T + (-0.433 - 0.900i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (1.59 - 0.559i)T + (0.781 - 0.623i)T^{2} \) |
| 67 | \( 1 + (0.974 + 0.222i)T^{2} \) |
| 71 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 73 | \( 1 + (0.433 + 0.0990i)T + (0.900 + 0.433i)T^{2} \) |
| 79 | \( 1 + (0.974 + 0.222i)T^{2} \) |
| 83 | \( 1 + (-0.781 - 0.623i)T^{2} \) |
| 89 | \( 1 + (1.05 - 1.68i)T + (-0.433 - 0.900i)T^{2} \) |
| 97 | \( 1 + (0.781 - 0.376i)T + (0.623 - 0.781i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64593130410493557221926003843, −9.818157109211567959923238594485, −9.191259372817523253695266683254, −8.380114174242819171004951993073, −7.42274457321616635425387424862, −6.63789983539076172326376544139, −5.37406339500333712396953801046, −4.61390382933098271482369573623, −2.61897881850716786709465327375, −1.35833975393823302682912603802,
1.61442408924215957215912133969, 2.96653439068943675524219499991, 3.97785223895348764154886052324, 5.99354848338282178708247553256, 6.46903040996226286106166433456, 7.52671728901673121945235712072, 8.330783441536245466293252554503, 9.402563101604943090062803475103, 10.15423809263998371207669537349, 10.64835153304434470130885556805