L(s) = 1 | + (0.900 + 0.433i)2-s + (0.623 + 0.781i)4-s + (−0.623 + 0.781i)5-s + (0.222 + 0.974i)8-s + (−0.222 − 0.974i)9-s + (−0.900 + 0.433i)10-s + (1.52 + 0.347i)13-s + (−0.222 + 0.974i)16-s − 1.80·17-s + (0.222 − 0.974i)18-s − 20-s + (−0.222 − 0.974i)25-s + (1.22 + 0.974i)26-s + (0.222 − 0.974i)29-s + (−0.623 + 0.781i)32-s + ⋯ |
L(s) = 1 | + (0.900 + 0.433i)2-s + (0.623 + 0.781i)4-s + (−0.623 + 0.781i)5-s + (0.222 + 0.974i)8-s + (−0.222 − 0.974i)9-s + (−0.900 + 0.433i)10-s + (1.52 + 0.347i)13-s + (−0.222 + 0.974i)16-s − 1.80·17-s + (0.222 − 0.974i)18-s − 20-s + (−0.222 − 0.974i)25-s + (1.22 + 0.974i)26-s + (0.222 − 0.974i)29-s + (−0.623 + 0.781i)32-s + ⋯ |
Λ(s)=(=(580s/2ΓC(s)L(s)(0.441−0.897i)Λ(1−s)
Λ(s)=(=(580s/2ΓC(s)L(s)(0.441−0.897i)Λ(1−s)
Degree: |
2 |
Conductor: |
580
= 22⋅5⋅29
|
Sign: |
0.441−0.897i
|
Analytic conductor: |
0.289457 |
Root analytic conductor: |
0.538012 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ580(419,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 580, ( :0), 0.441−0.897i)
|
Particular Values
L(21) |
≈ |
1.362599933 |
L(21) |
≈ |
1.362599933 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.900−0.433i)T |
| 5 | 1+(0.623−0.781i)T |
| 29 | 1+(−0.222+0.974i)T |
good | 3 | 1+(0.222+0.974i)T2 |
| 7 | 1+(−0.222−0.974i)T2 |
| 11 | 1+(−0.900−0.433i)T2 |
| 13 | 1+(−1.52−0.347i)T+(0.900+0.433i)T2 |
| 17 | 1+1.80T+T2 |
| 19 | 1+(−0.222+0.974i)T2 |
| 23 | 1+(0.623−0.781i)T2 |
| 31 | 1+(0.623+0.781i)T2 |
| 37 | 1+(0.277+1.21i)T+(−0.900+0.433i)T2 |
| 41 | 1+1.56iT−T2 |
| 43 | 1+(−0.623+0.781i)T2 |
| 47 | 1+(0.900+0.433i)T2 |
| 53 | 1+(−0.376+0.781i)T+(−0.623−0.781i)T2 |
| 59 | 1−T2 |
| 61 | 1+(−0.678−0.541i)T+(0.222+0.974i)T2 |
| 67 | 1+(−0.900+0.433i)T2 |
| 71 | 1+(0.900+0.433i)T2 |
| 73 | 1+(1.62−0.781i)T+(0.623−0.781i)T2 |
| 79 | 1+(−0.900+0.433i)T2 |
| 83 | 1+(−0.222+0.974i)T2 |
| 89 | 1+(0.846−1.75i)T+(−0.623−0.781i)T2 |
| 97 | 1+(0.777+0.974i)T+(−0.222+0.974i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27873439430746192122302912146, −10.62118702019868772747839513774, −9.024579680535958772797008644967, −8.378320428893708805035660713849, −7.16454371891961185441362571337, −6.53334019678693129820153839089, −5.81537489412941952641311170558, −4.18998801268479225140940596260, −3.73171193255862131468476489472, −2.44541356668335301913385293995,
1.58495374033259793645313059458, 3.08542149507336186641921875867, 4.26101103228687722074456990902, 4.94891266858901709766676690871, 5.99338433081824304233099100540, 7.02138907511285923519816626893, 8.264112197088242833604015494002, 8.876312980051317415787712305591, 10.23078249620950821145710743450, 11.14051118176512432148844924560