L(s) = 1 | + (0.900 + 0.433i)2-s + (0.623 + 0.781i)4-s + (−0.623 + 0.781i)5-s + (0.222 + 0.974i)8-s + (−0.222 − 0.974i)9-s + (−0.900 + 0.433i)10-s + (1.52 + 0.347i)13-s + (−0.222 + 0.974i)16-s − 1.80·17-s + (0.222 − 0.974i)18-s − 20-s + (−0.222 − 0.974i)25-s + (1.22 + 0.974i)26-s + (0.222 − 0.974i)29-s + (−0.623 + 0.781i)32-s + ⋯ |
L(s) = 1 | + (0.900 + 0.433i)2-s + (0.623 + 0.781i)4-s + (−0.623 + 0.781i)5-s + (0.222 + 0.974i)8-s + (−0.222 − 0.974i)9-s + (−0.900 + 0.433i)10-s + (1.52 + 0.347i)13-s + (−0.222 + 0.974i)16-s − 1.80·17-s + (0.222 − 0.974i)18-s − 20-s + (−0.222 − 0.974i)25-s + (1.22 + 0.974i)26-s + (0.222 − 0.974i)29-s + (−0.623 + 0.781i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.441 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.441 - 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.362599933\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.362599933\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.900 - 0.433i)T \) |
| 5 | \( 1 + (0.623 - 0.781i)T \) |
| 29 | \( 1 + (-0.222 + 0.974i)T \) |
good | 3 | \( 1 + (0.222 + 0.974i)T^{2} \) |
| 7 | \( 1 + (-0.222 - 0.974i)T^{2} \) |
| 11 | \( 1 + (-0.900 - 0.433i)T^{2} \) |
| 13 | \( 1 + (-1.52 - 0.347i)T + (0.900 + 0.433i)T^{2} \) |
| 17 | \( 1 + 1.80T + T^{2} \) |
| 19 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 23 | \( 1 + (0.623 - 0.781i)T^{2} \) |
| 31 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 37 | \( 1 + (0.277 + 1.21i)T + (-0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + 1.56iT - T^{2} \) |
| 43 | \( 1 + (-0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (-0.376 + 0.781i)T + (-0.623 - 0.781i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + (-0.678 - 0.541i)T + (0.222 + 0.974i)T^{2} \) |
| 67 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 71 | \( 1 + (0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (1.62 - 0.781i)T + (0.623 - 0.781i)T^{2} \) |
| 79 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 83 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 89 | \( 1 + (0.846 - 1.75i)T + (-0.623 - 0.781i)T^{2} \) |
| 97 | \( 1 + (0.777 + 0.974i)T + (-0.222 + 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27873439430746192122302912146, −10.62118702019868772747839513774, −9.024579680535958772797008644967, −8.378320428893708805035660713849, −7.16454371891961185441362571337, −6.53334019678693129820153839089, −5.81537489412941952641311170558, −4.18998801268479225140940596260, −3.73171193255862131468476489472, −2.44541356668335301913385293995,
1.58495374033259793645313059458, 3.08542149507336186641921875867, 4.26101103228687722074456990902, 4.94891266858901709766676690871, 5.99338433081824304233099100540, 7.02138907511285923519816626893, 8.264112197088242833604015494002, 8.876312980051317415787712305591, 10.23078249620950821145710743450, 11.14051118176512432148844924560