L(s) = 1 | + (−0.900 + 0.433i)2-s + (0.623 − 0.781i)4-s + (0.974 − 0.222i)5-s + (−0.222 + 0.974i)8-s + (0.222 − 0.974i)9-s + (−0.781 + 0.623i)10-s + (0.119 − 0.189i)13-s + (−0.222 − 0.974i)16-s − 0.867·17-s + (0.222 + 0.974i)18-s + (0.433 − 0.900i)20-s + (0.900 − 0.433i)25-s + (−0.0250 + 0.222i)26-s + (−0.974 + 0.222i)29-s + (0.623 + 0.781i)32-s + ⋯ |
L(s) = 1 | + (−0.900 + 0.433i)2-s + (0.623 − 0.781i)4-s + (0.974 − 0.222i)5-s + (−0.222 + 0.974i)8-s + (0.222 − 0.974i)9-s + (−0.781 + 0.623i)10-s + (0.119 − 0.189i)13-s + (−0.222 − 0.974i)16-s − 0.867·17-s + (0.222 + 0.974i)18-s + (0.433 − 0.900i)20-s + (0.900 − 0.433i)25-s + (−0.0250 + 0.222i)26-s + (−0.974 + 0.222i)29-s + (0.623 + 0.781i)32-s + ⋯ |
Λ(s)=(=(580s/2ΓC(s)L(s)(0.997+0.0676i)Λ(1−s)
Λ(s)=(=(580s/2ΓC(s)L(s)(0.997+0.0676i)Λ(1−s)
Degree: |
2 |
Conductor: |
580
= 22⋅5⋅29
|
Sign: |
0.997+0.0676i
|
Analytic conductor: |
0.289457 |
Root analytic conductor: |
0.538012 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ580(427,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 580, ( :0), 0.997+0.0676i)
|
Particular Values
L(21) |
≈ |
0.7181160618 |
L(21) |
≈ |
0.7181160618 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.900−0.433i)T |
| 5 | 1+(−0.974+0.222i)T |
| 29 | 1+(0.974−0.222i)T |
good | 3 | 1+(−0.222+0.974i)T2 |
| 7 | 1+(0.974+0.222i)T2 |
| 11 | 1+(−0.433−0.900i)T2 |
| 13 | 1+(−0.119+0.189i)T+(−0.433−0.900i)T2 |
| 17 | 1+0.867T+T2 |
| 19 | 1+(−0.974+0.222i)T2 |
| 23 | 1+(−0.781+0.623i)T2 |
| 31 | 1+(0.781+0.623i)T2 |
| 37 | 1+(−1.21−0.277i)T+(0.900+0.433i)T2 |
| 41 | 1+(−1.40−1.40i)T+iT2 |
| 43 | 1+(0.623+0.781i)T2 |
| 47 | 1+(−0.900+0.433i)T2 |
| 53 | 1+(0.623−1.78i)T+(−0.781−0.623i)T2 |
| 59 | 1+T2 |
| 61 | 1+(−0.656−0.0739i)T+(0.974+0.222i)T2 |
| 67 | 1+(0.433−0.900i)T2 |
| 71 | 1+(−0.900+0.433i)T2 |
| 73 | 1+(1.62+0.781i)T+(0.623+0.781i)T2 |
| 79 | 1+(−0.433+0.900i)T2 |
| 83 | 1+(0.974−0.222i)T2 |
| 89 | 1+(1.00+0.351i)T+(0.781+0.623i)T2 |
| 97 | 1+(1.22+0.974i)T+(0.222+0.974i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.73562660683946360675082117585, −9.673054482159271619572933741290, −9.338953811063912605576300602229, −8.448368396388228754427793266674, −7.34653706057705363950325735902, −6.36442361073689490449061665002, −5.83578256167267737171192133503, −4.53434509519388340639219722607, −2.75062123749709962093078165071, −1.35795921922294321547072713129,
1.78752101784372838563881709381, 2.63904242292705613475051831101, 4.18041742797586052840275388863, 5.56262400445531744057112123902, 6.63310122311892209519594318311, 7.48210289346774768966317349248, 8.457382834439225665903971235690, 9.365695608946997222861982972484, 9.978771253867809022272812194734, 10.95074125898553509320008199060