L(s) = 1 | + (−0.900 + 0.433i)2-s + (0.623 − 0.781i)4-s + (0.974 − 0.222i)5-s + (−0.222 + 0.974i)8-s + (0.222 − 0.974i)9-s + (−0.781 + 0.623i)10-s + (0.119 − 0.189i)13-s + (−0.222 − 0.974i)16-s − 0.867·17-s + (0.222 + 0.974i)18-s + (0.433 − 0.900i)20-s + (0.900 − 0.433i)25-s + (−0.0250 + 0.222i)26-s + (−0.974 + 0.222i)29-s + (0.623 + 0.781i)32-s + ⋯ |
L(s) = 1 | + (−0.900 + 0.433i)2-s + (0.623 − 0.781i)4-s + (0.974 − 0.222i)5-s + (−0.222 + 0.974i)8-s + (0.222 − 0.974i)9-s + (−0.781 + 0.623i)10-s + (0.119 − 0.189i)13-s + (−0.222 − 0.974i)16-s − 0.867·17-s + (0.222 + 0.974i)18-s + (0.433 − 0.900i)20-s + (0.900 − 0.433i)25-s + (−0.0250 + 0.222i)26-s + (−0.974 + 0.222i)29-s + (0.623 + 0.781i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0676i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 580 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0676i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7181160618\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7181160618\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.900 - 0.433i)T \) |
| 5 | \( 1 + (-0.974 + 0.222i)T \) |
| 29 | \( 1 + (0.974 - 0.222i)T \) |
good | 3 | \( 1 + (-0.222 + 0.974i)T^{2} \) |
| 7 | \( 1 + (0.974 + 0.222i)T^{2} \) |
| 11 | \( 1 + (-0.433 - 0.900i)T^{2} \) |
| 13 | \( 1 + (-0.119 + 0.189i)T + (-0.433 - 0.900i)T^{2} \) |
| 17 | \( 1 + 0.867T + T^{2} \) |
| 19 | \( 1 + (-0.974 + 0.222i)T^{2} \) |
| 23 | \( 1 + (-0.781 + 0.623i)T^{2} \) |
| 31 | \( 1 + (0.781 + 0.623i)T^{2} \) |
| 37 | \( 1 + (-1.21 - 0.277i)T + (0.900 + 0.433i)T^{2} \) |
| 41 | \( 1 + (-1.40 - 1.40i)T + iT^{2} \) |
| 43 | \( 1 + (0.623 + 0.781i)T^{2} \) |
| 47 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 53 | \( 1 + (0.623 - 1.78i)T + (-0.781 - 0.623i)T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + (-0.656 - 0.0739i)T + (0.974 + 0.222i)T^{2} \) |
| 67 | \( 1 + (0.433 - 0.900i)T^{2} \) |
| 71 | \( 1 + (-0.900 + 0.433i)T^{2} \) |
| 73 | \( 1 + (1.62 + 0.781i)T + (0.623 + 0.781i)T^{2} \) |
| 79 | \( 1 + (-0.433 + 0.900i)T^{2} \) |
| 83 | \( 1 + (0.974 - 0.222i)T^{2} \) |
| 89 | \( 1 + (1.00 + 0.351i)T + (0.781 + 0.623i)T^{2} \) |
| 97 | \( 1 + (1.22 + 0.974i)T + (0.222 + 0.974i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.73562660683946360675082117585, −9.673054482159271619572933741290, −9.338953811063912605576300602229, −8.448368396388228754427793266674, −7.34653706057705363950325735902, −6.36442361073689490449061665002, −5.83578256167267737171192133503, −4.53434509519388340639219722607, −2.75062123749709962093078165071, −1.35795921922294321547072713129,
1.78752101784372838563881709381, 2.63904242292705613475051831101, 4.18041742797586052840275388863, 5.56262400445531744057112123902, 6.63310122311892209519594318311, 7.48210289346774768966317349248, 8.457382834439225665903971235690, 9.365695608946997222861982972484, 9.978771253867809022272812194734, 10.95074125898553509320008199060