L(s) = 1 | − 2·3-s − 4·7-s + 9-s − 6·13-s + 8·21-s + 8·23-s + 4·27-s − 29-s + 8·31-s + 12·39-s + 6·41-s + 2·43-s + 2·47-s + 9·49-s + 6·53-s + 12·59-s − 6·61-s − 4·63-s − 16·67-s − 16·69-s − 4·73-s − 8·79-s − 11·81-s − 8·83-s + 2·87-s − 10·89-s + 24·91-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 1.51·7-s + 1/3·9-s − 1.66·13-s + 1.74·21-s + 1.66·23-s + 0.769·27-s − 0.185·29-s + 1.43·31-s + 1.92·39-s + 0.937·41-s + 0.304·43-s + 0.291·47-s + 9/7·49-s + 0.824·53-s + 1.56·59-s − 0.768·61-s − 0.503·63-s − 1.95·67-s − 1.92·69-s − 0.468·73-s − 0.900·79-s − 1.22·81-s − 0.878·83-s + 0.214·87-s − 1.05·89-s + 2.51·91-s + ⋯ |
Λ(s)=(=(5800s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5800s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 29 | 1+T |
good | 3 | 1+2T+pT2 |
| 7 | 1+4T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+pT2 |
| 23 | 1−8T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1−2T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1−6T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1+16T+pT2 |
| 71 | 1+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+8T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1+8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.31017073685675572016217862806, −7.06858877722135191127773358539, −6.25567243109627997196809723557, −5.70726895584028784978653649653, −4.94368401696947777983396039060, −4.28690715149454511878958416902, −3.04124127274992298758499240166, −2.59669004146168747577806606099, −0.906127559401400389456999505674, 0,
0.906127559401400389456999505674, 2.59669004146168747577806606099, 3.04124127274992298758499240166, 4.28690715149454511878958416902, 4.94368401696947777983396039060, 5.70726895584028784978653649653, 6.25567243109627997196809723557, 7.06858877722135191127773358539, 7.31017073685675572016217862806