L(s) = 1 | − i·2-s − 4-s + 2i·7-s + i·8-s + 4·11-s − i·13-s + 2·14-s + 16-s + 6·19-s − 4i·22-s − 4i·23-s − 26-s − 2i·28-s − 8·29-s − 2·31-s − i·32-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.5·4-s + 0.755i·7-s + 0.353i·8-s + 1.20·11-s − 0.277i·13-s + 0.534·14-s + 0.250·16-s + 1.37·19-s − 0.852i·22-s − 0.834i·23-s − 0.196·26-s − 0.377i·28-s − 1.48·29-s − 0.359·31-s − 0.176i·32-s + ⋯ |
Λ(s)=(=(5850s/2ΓC(s)L(s)(0.447+0.894i)Λ(2−s)
Λ(s)=(=(5850s/2ΓC(s+1/2)L(s)(0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
5850
= 2⋅32⋅52⋅13
|
Sign: |
0.447+0.894i
|
Analytic conductor: |
46.7124 |
Root analytic conductor: |
6.83465 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ5850(5149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 5850, ( :1/2), 0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.981778787 |
L(21) |
≈ |
1.981778787 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1 |
| 13 | 1+iT |
good | 7 | 1−2iT−7T2 |
| 11 | 1−4T+11T2 |
| 17 | 1−17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1+8T+29T2 |
| 31 | 1+2T+31T2 |
| 37 | 1+6iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1−8iT−47T2 |
| 53 | 1+12iT−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1−2iT−67T2 |
| 71 | 1−16T+71T2 |
| 73 | 1−14iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−12iT−83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1−10iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.201715606930708252025037642233, −7.23854486688122120611865192190, −6.59951484815488178626689415255, −5.50562291979258512182371338605, −5.28782373922338305537407371163, −4.00212743948860978137508466672, −3.58487593539234385744396251027, −2.54774098240635433239818409795, −1.77433640158321144240438325485, −0.68105099931596257592621609714,
0.884521569734502184556520834614, 1.77393214030762998308744781617, 3.35807442193009513728454564044, 3.77886063266321019197301658509, 4.67415203493844251435354007373, 5.42678464495939484324141187873, 6.17813753322531809211104249985, 6.95309731478338360853701405256, 7.37122253526833356456622698365, 8.046351333288953364648310047215