Properties

Label 2-5850-5.4-c1-0-54
Degree $2$
Conductor $5850$
Sign $0.447 + 0.894i$
Analytic cond. $46.7124$
Root an. cond. $6.83465$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + 2i·7-s + i·8-s + 4·11-s i·13-s + 2·14-s + 16-s + 6·19-s − 4i·22-s − 4i·23-s − 26-s − 2i·28-s − 8·29-s − 2·31-s i·32-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.755i·7-s + 0.353i·8-s + 1.20·11-s − 0.277i·13-s + 0.534·14-s + 0.250·16-s + 1.37·19-s − 0.852i·22-s − 0.834i·23-s − 0.196·26-s − 0.377i·28-s − 1.48·29-s − 0.359·31-s − 0.176i·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5850\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(46.7124\)
Root analytic conductor: \(6.83465\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5850} (5149, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5850,\ (\ :1/2),\ 0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.981778787\)
\(L(\frac12)\) \(\approx\) \(1.981778787\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 + iT \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 4T + 11T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 + 6iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 8iT - 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 + 12iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 - 2iT - 67T^{2} \)
71 \( 1 - 16T + 71T^{2} \)
73 \( 1 - 14iT - 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + 6T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.201715606930708252025037642233, −7.23854486688122120611865192190, −6.59951484815488178626689415255, −5.50562291979258512182371338605, −5.28782373922338305537407371163, −4.00212743948860978137508466672, −3.58487593539234385744396251027, −2.54774098240635433239818409795, −1.77433640158321144240438325485, −0.68105099931596257592621609714, 0.884521569734502184556520834614, 1.77393214030762998308744781617, 3.35807442193009513728454564044, 3.77886063266321019197301658509, 4.67415203493844251435354007373, 5.42678464495939484324141187873, 6.17813753322531809211104249985, 6.95309731478338360853701405256, 7.37122253526833356456622698365, 8.046351333288953364648310047215

Graph of the $Z$-function along the critical line