Properties

Label 2-588-1.1-c1-0-5
Degree $2$
Conductor $588$
Sign $-1$
Analytic cond. $4.69520$
Root an. cond. $2.16684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 6·11-s − 2·13-s + 4·19-s − 6·23-s − 5·25-s − 27-s + 6·29-s − 8·31-s + 6·33-s + 2·37-s + 2·39-s − 12·41-s − 4·43-s − 12·47-s − 6·53-s − 4·57-s + 10·61-s + 8·67-s + 6·69-s + 6·71-s + 10·73-s + 5·75-s − 4·79-s + 81-s + 12·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 1.80·11-s − 0.554·13-s + 0.917·19-s − 1.25·23-s − 25-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 1.04·33-s + 0.328·37-s + 0.320·39-s − 1.87·41-s − 0.609·43-s − 1.75·47-s − 0.824·53-s − 0.529·57-s + 1.28·61-s + 0.977·67-s + 0.722·69-s + 0.712·71-s + 1.17·73-s + 0.577·75-s − 0.450·79-s + 1/9·81-s + 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(4.69520\)
Root analytic conductor: \(2.16684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 588,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
good5 \( 1 + p T^{2} \)
11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11620249108594953836248897914, −9.790967618641863520242547413629, −8.245440388686575346900612009742, −7.67615829141164438776279339720, −6.60712751651675961597255577118, −5.45823535038952231993330195200, −4.92172543859600215194027340087, −3.44705194784191488479832061991, −2.08973766081077835946990875259, 0, 2.08973766081077835946990875259, 3.44705194784191488479832061991, 4.92172543859600215194027340087, 5.45823535038952231993330195200, 6.60712751651675961597255577118, 7.67615829141164438776279339720, 8.245440388686575346900612009742, 9.790967618641863520242547413629, 10.11620249108594953836248897914

Graph of the $Z$-function along the critical line