L(s) = 1 | − 9·3-s + 77.8·5-s + 81·9-s + 58.2·11-s − 792.·13-s − 700.·15-s + 464.·17-s + 984.·19-s − 635.·23-s + 2.92e3·25-s − 729·27-s + 6.39e3·29-s + 8.42e3·31-s − 524.·33-s − 1.40e3·37-s + 7.13e3·39-s − 1.90e4·41-s + 6.02e3·43-s + 6.30e3·45-s − 1.88e3·47-s − 4.18e3·51-s + 5.25e3·53-s + 4.53e3·55-s − 8.86e3·57-s − 3.11e3·59-s + 2.20e4·61-s − 6.16e4·65-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1.39·5-s + 0.333·9-s + 0.145·11-s − 1.30·13-s − 0.803·15-s + 0.389·17-s + 0.625·19-s − 0.250·23-s + 0.937·25-s − 0.192·27-s + 1.41·29-s + 1.57·31-s − 0.0838·33-s − 0.168·37-s + 0.750·39-s − 1.77·41-s + 0.496·43-s + 0.463·45-s − 0.124·47-s − 0.225·51-s + 0.256·53-s + 0.202·55-s − 0.361·57-s − 0.116·59-s + 0.760·61-s − 1.81·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.339288261\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.339288261\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 9T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 77.8T + 3.12e3T^{2} \) |
| 11 | \( 1 - 58.2T + 1.61e5T^{2} \) |
| 13 | \( 1 + 792.T + 3.71e5T^{2} \) |
| 17 | \( 1 - 464.T + 1.41e6T^{2} \) |
| 19 | \( 1 - 984.T + 2.47e6T^{2} \) |
| 23 | \( 1 + 635.T + 6.43e6T^{2} \) |
| 29 | \( 1 - 6.39e3T + 2.05e7T^{2} \) |
| 31 | \( 1 - 8.42e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + 1.40e3T + 6.93e7T^{2} \) |
| 41 | \( 1 + 1.90e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 6.02e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + 1.88e3T + 2.29e8T^{2} \) |
| 53 | \( 1 - 5.25e3T + 4.18e8T^{2} \) |
| 59 | \( 1 + 3.11e3T + 7.14e8T^{2} \) |
| 61 | \( 1 - 2.20e4T + 8.44e8T^{2} \) |
| 67 | \( 1 + 5.47e4T + 1.35e9T^{2} \) |
| 71 | \( 1 + 1.52e4T + 1.80e9T^{2} \) |
| 73 | \( 1 - 5.00e4T + 2.07e9T^{2} \) |
| 79 | \( 1 - 1.14e3T + 3.07e9T^{2} \) |
| 83 | \( 1 - 1.22e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + 7.04e4T + 5.58e9T^{2} \) |
| 97 | \( 1 - 1.32e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02754815934659671053450534888, −9.339603477780504106252883574320, −8.147631834892730402497034534816, −6.99282971476350411024135350767, −6.24988955077590271028094949711, −5.33918967037268809159125032702, −4.64310739385207882499063768211, −2.97774389726670161370935588264, −1.93202799810656794633126448076, −0.77908399882559498255240959856,
0.77908399882559498255240959856, 1.93202799810656794633126448076, 2.97774389726670161370935588264, 4.64310739385207882499063768211, 5.33918967037268809159125032702, 6.24988955077590271028094949711, 6.99282971476350411024135350767, 8.147631834892730402497034534816, 9.339603477780504106252883574320, 10.02754815934659671053450534888